
PN 1024512A Logic PD, Inc. All Rights Reserved. i

Introduction to Direct Hardware Access with
Linux Device Drivers
Application Note 582

Logic PD // Products
Published: August 2013

Abstract
This document provides instructions about how to create and use a basic Linux device driver,
and explains how the device driver interacts with the Linux operating system.

This document contains valuable proprietary and confidential information and the attached file contains source code, ideas,
and techniques that are owned by Logic PD, Inc. (collectively “Logic PD’s Proprietary Information”). Logic PD’s Proprietary
Information may not be used by or disclosed to any third party except under written license from Logic PD, Inc.

Logic PD, Inc. makes no representation or warranties of any nature or kind regarding Logic PD’s Proprietary Information or
any products offered by Logic PD, Inc. Logic PD’s Proprietary Information is disclosed herein pursuant and subject to the
terms and conditions of a duly executed license or agreement to purchase or lease equipment. The only warranties made
by Logic PD, Inc., if any, with respect to any products described in this document are set forth in such license or
agreement. Logic PD, Inc. shall have no liability of any kind, express or implied, arising out of the use of the Information in
this document, including direct, indirect, special or consequential damages.

Logic PD, Inc. may have patents, patent applications, trademarks, copyrights, trade secrets, or other intellectual property
rights pertaining to Logic PD’s Proprietary Information and products described in this document (collectively “Logic PD’s
Intellectual Property”). Except as expressly provided in any written license or agreement from Logic PD, Inc., this
document and the information contained therein does not create any license to Logic PD’s Intellectual Property.

The Information contained herein is subject to change without notice. Revisions may be issued regarding changes and/or
additions.

© Copyright 2013, Logic PD, Inc. All Rights Reserved.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. ii

Revision History
REV EDITOR DESCRIPTION APPROVAL DATE
A JA -Initial Release RAH, SO 08/08/13

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. iii

Table of Contents
1 Introduction .. 1

1.1 Linux_Device_Drivers_Direct_Hardware_Access_Files.tar.gz Directory 1
1.2 Overview ... 1
1.3 Background .. 1

2 Load and Build the Source Code .. 3
2.1 Prerequisites .. 3
2.2 TI PSP Environment for AM3517 SOM-M2 .. 3

2.2.1 Load .. 3
2.2.2 Build .. 4
2.2.3 Install .. 5

2.3 Logic PD LTIB Environment for DM3730/AM3703 Torpedo + Wireless SOM 8
2.3.1 Load .. 8
2.3.2 Build .. 8
2.3.3 Install ... 12

3 Run Demonstration ... 13
3.1 Connect Multimeter .. 13
3.2 Load Module .. 14
3.3 Run User Application .. 14
3.4 Unload Module ... 15
3.5 Connect Feedback Jumper .. 16
3.6 Reload Module ... 16
3.7 Rerun User Application Feedback ... 17
3.8 Enable Threaded Interrupt .. 18
3.9 Clear Interrupt Count ... 18
3.10 Change Debug Message Zones .. 19

4 A Tour of the Source .. 21
4.1 Load Module .. 21

4.1.1 Call Script ... 21
4.1.2 Examine Script ... 22

4.2 Module Source ... 23
4.2.1 Driver Instance Structure. ... 23
4.2.2 module_init and module_exit Macros .. 23
4.2.3 Device Operations Structure .. 23
4.2.4 IO Pin Setup .. 24
4.2.5 Interrupt Setup .. 24
4.2.6 Move Data between Kernel and User Space ... 25
4.2.7 Interrupts .. 25
4.2.8 Debug Zones ... 25

4.3 User Application Source .. 26
4.3.1 Setup and User Input .. 26
4.3.2 Open Driver ... 27
4.3.3 Send Command to Driver .. 27
4.3.4 Responses from Driver .. 28
4.3.5 Close Driver ... 28

Appendix A: Install the SSH Server ... 29

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 1

1 Introduction
Creating a device driver for Linux is a complex task. There are many examples that provide
guidance; however, many of the examples are too complex and do not show how to access the
hardware directly, which is critical for new projects with Logic PD SOMs.

The example driver provided here is partially based on code from the massively popular Linux
Device Drivers, Third Edition1 publication from O'Reilly Media. It’s highly recommended that you
begin reading this publication as you being to study Linux device drivers. It’s well written, free, and
will allow you to modify the simple example provided in this document into a specialized driver for
your project.

1.1 Linux_Device_Drivers_Direct_Hardware_Access_Files.tar.gz Directory

Accompanying this application note within the
1024512A_AN582_Linux_Device_Drivers_Direct_Hardware_Access.zip file is a directory containing
software files to be used with these instructions. The
Linux_Device_Drivers_Direct_Hardware_Access_Files.tar.gz directory should contain the following
files that will be referenced throughout this document:

ProtoDriver-1.0.tar.gz
ProtoDriver-1.0.tar.gz.md5
protoDriver.spec

1.2 Overview

This presentation will cover an example device driver (a kernel module) and a user-mode
application that can interact with it.

The kernel module has the following features:

■ A minimalist structure of a character device driver
■ Load-time device allocation
■ Module parameters for dynamic configuration
■ Demonstrates direct IO pin use
■ Demonstrates modification of the pin mux registers
■ Demonstrates the use of interrupts (hard and threaded)
■ Demonstrates use of thread-safe data types
■ Demonstrates dynamic debug zones

This list of features is enough for the creation of drivers in the prototyping environment.

1.3 Background

One of the critical concepts of the Unix/Linux operating system (OS) is that everything is a file.
Device drivers are no different and they can be found in the /dev directory where a file is created
for each instance of a driver.

1 http://lwn.net/Kernel/LDD3/

http://lwn.net/Kernel/LDD3/
http://lwn.net/Kernel/LDD3/
http://lwn.net/Kernel/LDD3/

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 2

As is common with modern OSs, memory space is split and protected between the OS (the kernel)
and user applications. This diagram shows the basic break down:

Figure 1.1: Memory Distribution

In order to access the hardware, a program in the user space must go through the kernel. Allowing
direct access to the hardware from the user space is a risk to system stability and security. Directly
accessing one memory area from the other will cause errors. Part of the purpose of this example is
to show the interaction between a user space application and a driver running in the kernel space.
The structure of this interaction between the application and the driver allows safe and
deterministic access to the system hardware.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 3

2 Load and Build the Source Code
To address the two most common development environments encountered when using Logic PD
SOMs, we have provided installation instructions for both the DM3730/AM3703 Torpedo + Wireless
SOM and the AM3517 SOM-M2, which use the Logic PD LTIB and the Texas Instruments (TI) PSP
environments respectively.

2.1 Prerequisites

For both of the following examples, the Linux kernel must have already been successfully built on
the most recent build.

1. First, copy the Linux_Device_Drivers_Direct_Hardware_Access_Files.tar.gz file into the
Downloads directory.

2. Untar the file.

logic@logic-desktop-am3517:~/Downloads$ tar xf
Linux_Device_Drivers_Direct_Hardware_Access_Files.tar.gz
logic@logic-desktop-am3517:~/Downloads$

For the AM3517 TI PSP environment, a number of symbolic links are used in the path names to
shorten them. These are set up as part of the build process provided in the AM3517 Linux User
Guide.2

2.2 TI PSP Environment for AM3517 SOM-M2

In this section, the TI AM3517 05.05.00.00 PSP environment in the Logic PD Virtual Machine for the
AM3517 Linux SDK3 (hereafter, VM) will be used.

2.2.1 Load

1. Switch to the Projects directory.

logic@logic-desktop-am3517:~$ cd $HOME/TI_SDK/Projects
logic@logic-desktop-am3517:~/TI_SDK/Projects/TI_SDK/$

2. Copy the source code to the Projects directory.

logic@logic-desktop-am3517:~/TI_SDK/Projects$ cp
$HOME/Downloads/Linux_Device_Drivers_Direct_Hardware_Access_Files/ProtoDriv
er-1.0.tar.gz .
logic@logic-desktop-am3517:~/TI_SDK/Projects$

3. Unzip the source code and switch into it.

logic@logic-desktop-am3517:~/TI_SDK/Projects$ tar xf ProtoDriver-1.0.tar.gz
logic@logic-desktop-am3517:~/TI_SDK/Projects$ cd ProtoDriver-1.0/
logic@logic-desktop-am3517:~/TI_SDK/Projects/ProtoDriver-1.0$ ls
proto protoUserApp
logic@logic-desktop-am3517:~/TI_SDK/Projects/ProtoDriver-1.0$

2 http://support.logicpd.com/downloads/1434/
3 http://support.logicpd.com/downloads/1564/

http://support.logicpd.com/downloads/1434/
http://support.logicpd.com/downloads/1434/
http://support.logicpd.com/downloads/1564/
http://support.logicpd.com/downloads/1564/
http://support.logicpd.com/downloads/1434/
http://support.logicpd.com/downloads/1564/

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 4

2.2.2 Build

1. Run the environment script.

logic@logic-desktop-am3517:~/TI_SDK/Projects/ProtoDriver-1.0$ source
$HOME/TI_SDK/linux-devkit/environment-setup
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0>

2. Switch to the kernel module code.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0> cd proto
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto>

3. Clean the build.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto> make clean
rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto>

4. Build the kernel module source.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto> make ARCH=arm
CROSS_COMPILE=arm-arago-linux-gnueabi- KERNELDIR=$HOME/TI_SDK/KERNEL
echo CC: arm-arago-linux-gnueabi-gcc
CC: arm-arago-linux-gnueabi-gcc
make -C /home/logic/TI_SDK/KERNEL
M=/home/logic/TI_SDK/Projects/ProtoDriver-1.0/proto
LDDINC=/home/logic/TI_SDK/KERNEL/include modules
make[1]: Entering directory `/home/logic/ti-sdk-am3517-evm-
05.05.00.00/board-support/linux-2.6.37-psp04.02.00.07.sdk'
 CC [M] /home/logic/TI_SDK/Projects/ProtoDriver-1.0/proto/main.o
 LD [M] /home/logic/TI_SDK/Projects/ProtoDriver-1.0/proto/proto.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC /home/logic/TI_SDK/Projects/ProtoDriver-1.0/proto/proto.mod.o
 LD [M] /home/logic/TI_SDK/Projects/ProtoDriver-1.0/proto/proto.ko
make[1]: Leaving directory `/home/logic/ti-sdk-am3517-evm-
05.05.00.00/board-support/linux-2.6.37-psp04.02.00.07.sdk'
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto>

5. Edit the module load file proto_load to select the IO pins for your platform.

The file proto_load contains two assignments for the hwOptions variable, one of which is
commented out. The first is for the AM3517 SOM-M2 and the second is for the
DM3730/AM3703 Torpedo + Wireless SOM. The file should look like this:

...
#Here we perform the processor specific configuration of the driver.
#AM3517
hwOptions="requestedPinInterrupt=11 requestedPinInterruptAddr=0x48002A2 ...

#DM37_TORPEDO
#i2cset -f -y 1 0x49 0x0e 0x04
#hwOptions="requestedPinInterrupt=118 requestedPinInterruptAddr=0x48002 ...

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 5

...

6. Switch to the sample application source.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto> cd ../protoUserApp/
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/protoUserApp>

7. Clean the build.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/protoUserApp> make clean
rm -rf protoUserApp *.o *.out main
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/protoUserApp>

8. Build the sample application.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/protoUserApp> make
protoUserApp
arm-arago-linux-gnueabi-gcc -Wl,--rpath=/lib:/usr/lib -Wl,--dynamic-
linker=/lib/ld-linux.so.3 -c -o main.o main.c
arm-arago-linux-gnueabi-gcc -Wl,--rpath=/lib:/usr/lib -Wl,--dynamic-
linker=/lib/ld-linux.so.3 main.o -o protoUserApp
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/protoUserApp>

2.2.3 Install

To use the files, you’ll need to copy them into the target file system. The home directory is an
acceptable place to try them out. This can be done via NFS or SCP.

2.2.3.1 NFS

1. Copy the user application.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/protoUserApp> sudo cp
protoUserApp $HOME/TI_SDK/targetNFS/home/root/.
[sudo] password for logic:
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/protoUserApp>

As you see above, the root password was needed to copy files into the NFS directory. The
credentials are retained for a few minutes, so they may not be needed for the next
commands.

2. Switch back to the kernel module directory.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/protoUserApp> cd ../proto
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto>

3. Copy the kernel module files.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto> make install
TARGET_DEST=$HOME/TI_SDK/targetNFS/home/root
sudo cp proto.ko /home/logic/TI_SDK/targetNFS/home/root/.
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto>

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 6

4. Copy the kernel module script files.

[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto> make
install_scripts TARGET_DEST=$HOME/TI_SDK/targetNFS/home/root
sudo cp proto_load /home/logic/TI_SDK/targetNFS/home/root/.
sudo cp proto_unload /home/logic/TI_SDK/targetNFS/home/root/.
[linux-devkit]:~/TI_SDK/Projects/ProtoDriver-1.0/proto>

2.2.3.2 SCP

For this example to work, the target system must be on a network that is accessible from the
development environment. You many need to install the SSH server on your host PC to use this
method. See Appendix A for the SSH server installation steps.

If you are using the Logic PD VM and have not already installed SSH, do so by following the steps
in Appendix A. Also, your target system needs to have SCP installed. For the TI PSP path, there are
two root filesystems provided. The SCP utility is only installed in the tisdk-rootfs-am3517-
evm.tar.gz image, but there are options if you need to use the base-rootfs-am3517-evm.tar.gz
image.

NOTE: If you need SCP in the base-rootfs-am3517-evm.tar.gz image, you can transfer it by
unpacking base-rootfs-am3517-evm.tar.gz on the host PC, adding the SCP utility and its libraries,
and then repacking it.

1. Determine the IP address of your host PC. Look for the eth0 or eth1 adaptor; this is
highlighted in the example below. Copy the address from the inet addr field, which includes
X.X.X.X. as a placeholder for the IP address below.

[linux-devkit]:~> ifconfig
eth1 Link encap:Ethernet HWaddr --:--:--:--:--:--
 inet addr:X.X.X.X Bcast:--.--.--.--- Mask:255.255.255.0
 inet6 addr: ----::----:----:----:----/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:261418 errors:0 dropped:0 overruns:0 frame:0
 TX packets:110319 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:131598602 (131.5 MB) TX bytes:162267020 (162.2 MB)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:112 errors:0 dropped:0 overruns:0 frame:0
 TX packets:112 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:9680 (9.6 KB) TX bytes:9680 (9.6 KB)

[linux-devkit]:~>

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 7

2. Identify the path of the example files. This will be different for PSP and LTIB development
setups:

□ For the AM3517 PSP:

root@am3517-evm:~# export
EX_BASE_PATH=/home/logic/TI_SDK/Projects/ProtoDriver-1.0
root@am3517-evm:~#

□ For the DM3730/AM3703 LTIB:

DM-37x# export EX_BASE_PATH=/home/logic/logic/Logic_BSPs/Linux_3.0/10
22853_LogicPD_Linux_BSP_2.2-2/rpm/BUILD/ProtoDriver-1.0
DM-37x#

3. On the target, switch to the home directory.

root@am3517-evm:~# cd
root@am3517-evm:~#

4. Use the SCP command to copy the module file. Be sure to replace the X.X.X.X in the
command below with the IP address from Step 1 above.

root@am3517-evm:~# scp logic@X.X.X.X:" \
$EX_BASE_PATH/proto/proto.ko \
$EX_BASE_PATH/proto/proto_load \
$EX_BASE_PATH/proto/proto_unload" \
.

Host 'X.X.X.X' is not in the trusted hosts file.
(fingerprint md5 --:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--)
Do you want to continue connecting? (y/n) yes
logic@X.X.X.X's password:
proto.ko 100% 89KB 88.7KB/s 00:00
proto_load 100% 1005 1.0KB/s 00:00
proto_unload 100% 181 0.2KB/s 00:00
root@am3517-evm:~#

In the example above, the host PC was not yet listed as a trusted host. You may answer yes to the
question to add it when prompted.

5. Use the SCP command to copy the user application files. Again, be sure to replace the
X.X.X.X in the command below with the IP address from Step 1 above.

root@am3517-evm:~# scp
logic@X.X.X.X:$EX_BASE_PATH/protoUserApp/protoUserApp .
logic@X.X.X.X's password:
protoUserApp 100% 46KB 46.4KB/s 00:00
root@am3517-evm:~#

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 8

2.3 Logic PD LTIB Environment for DM3730/AM3703 Torpedo + Wireless
SOM

2.3.1 Load

1. If it doesn’t already exist, create a symbolic link in the home directory to shorten the path
to the LTIB environment.

logic@logic-desktop:~$ cd
logic@logic-desktop:~$ ln -s
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-2
ltib_3_0
logic@logic-desktop:~$

2. Switch to the LTIB environment.

logic@logic-desktop:~$ cd ltib_3_0
logic@logic-desktop:~/ltib_3_0$

3. From the Downloads directory, copy the source code tar file and its accompanying MD5sum
file into the LTIB package pool.

logic@logic-desktop:~/ltib_3_0$ cp
$HOME/Downloads/Linux_Device_Drivers_Direct_Hardware_Access_Files/ProtoDriv
er-1.0.tar.gz* LTIB-package-pool/.
logic@logic-desktop:~/ltib_3_0$

4. Create the directory in the distribution directory for the spec file.

logic@logic-desktop:~/ltib_3_0$ mkdir -p dist/lfs-5.1/protoDriver
logic@logic-desktop:~/ltib_3_0$

5. Copy the spec file into the distribution directory.

logic@logic-desktop:~/ltib_3_0$ cp
$HOME/Downloads/Linux_Device_Drivers_Direct_Hardware_Access_Files/protoDriv
er.spec dist/lfs-5.1/protoDriver/.
logic@logic-desktop:~/ltib_3_0$

2.3.2 Build

1. Command LTIB to prep the source.

logic@logic-desktop:~/ltib_3_0$./ltib -m prep -p protoDriver.spec

Processing: protoDriver
=========================
Build path taken because: build key set, no prebuilt rpm,
clobber 0 dir_bld unpack yes spec_upd 0

rpmbuild --dbpath
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 9

2/rootfs//var/lib/rpm --target arm --define
'_unpackaged_files_terminate_build 0' --define '_target_cpu arm' --define
'__strip strip' --define '_topdir
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-2/rpm'
--define '_prefix /usr' --define '_host_prefix /opt/ltib' --define
'_tmppath
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-2/tmp'
--define '_rpmdir
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/RPMS' --define '_mandir /usr/share/man' --define '_sysconfdir /etc'
--define '_localstatedir /var' -bp
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/dist/lfs-5.1/protoDriver/protoDriver.spec
Building target platforms: arm
Building for target arm
Executing(%prep): /bin/sh -e
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/tmp/rpm-tmp.82298
+ umask 022
+ cd /home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD
+ cd /home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD
+ rm -rf ProtoDriver-1.0
+ /bin/gzip -dc
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/SOURCES/ProtoDriver-1.0.tar.gz
+ tar -xvvf -
drwxr-xr-x logic/logic 0 2012-11-20 15:35 ProtoDriver-1.0/
drwxr-xr-x logic/logic 0 2012-11-26 14:59 ProtoDriver-
1.0/protoUserApp/
-rw-r--r-- logic/logic 266 2012-11-26 14:59 ProtoDriver-
1.0/protoUserApp/Makefile
-rw-r--r-- logic/logic 443 2012-11-20 15:35 ProtoDriver-
1.0/protoUserApp/main.h
-rw-r--r-- logic/logic 2996 2012-11-20 15:35 ProtoDriver-
1.0/protoUserApp/main.c
drwxr-xr-x logic/logic 0 2012-11-26 14:59 ProtoDriver-1.0/proto/
-rw-r--r-- logic/logic 1005 2012-11-20 15:34 ProtoDriver-
1.0/proto/proto_load
-rw-r--r-- logic/logic 466 2012-11-20 15:34 ProtoDriver-
1.0/proto/Makefile
-rw-r--r-- logic/logic 701 2012-11-20 15:34 ProtoDriver-
1.0/proto/proto_ioctl.h
-rw-r--r-- logic/logic 2832 2012-11-20 15:34 ProtoDriver-
1.0/proto/proto.h
-rw-r--r-- logic/logic 181 2012-11-20 15:34 ProtoDriver-
1.0/proto/proto_unload
-rw-r--r-- logic/logic 12288 2012-11-20 15:34 ProtoDriver-
1.0/proto/.proto.h.swp
-rw-r--r-- logic/logic 0 2012-11-20 15:34 ProtoDriver-
1.0/proto/Module.symvers
-rw-r--r-- logic/logic 86 2012-11-20 15:34 ProtoDriver-
1.0/proto/modules.order
-rw-r--r-- logic/logic 12712 2012-11-20 15:34 ProtoDriver-
1.0/proto/main.c

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 10

-rw-r--r-- logic/logic 32768 2012-11-20 15:34 ProtoDriver-
1.0/proto/.main.c.swp
+ STATUS=0
+ '[' 0 -ne 0 ']'
+ cd ProtoDriver-1.0
+ exit 0
Build time for protoDriver: 0 seconds

logic@logic-desktop:~/ltib_3_0$

2. Command LTIB to build the source.

logic@logic-desktop:~/ltib_3_0$./ltib -m scbuild -p protoDriver.spec

Processing: protoDriver
=========================
Build path taken because: directory build, build key set, no prebuilt rpm,

rpmbuild --dbpath
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rootfs//var/lib/rpm --target arm --define
'_unpackaged_files_terminate_build 0' --define '_target_cpu arm' --define
'__strip strip' --define '_topdir
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-2/rpm'
--define '_prefix /usr' --define '_host_prefix /opt/ltib' --define
'_tmppath
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-2/tmp'
--define '_rpmdir
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/RPMS' --define '_mandir /usr/share/man' --define '_sysconfdir /etc'
--define '_localstatedir /var' -bc --short-circuit
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/dist/lfs-5.1/protoDriver/protoDriver.spec
Building target platforms: arm
Building for target arm
Executing(%build): /bin/sh -e
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/tmp/rpm-tmp.69759
+ umask 022
+ cd /home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD
+ cd ProtoDriver-1.0
+
KSRC_DIR=/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2
.2-2/rpm/BUILD/linux
++ eval echo
+++ echo
+ KBOUT=
+
KBOUT=/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/linux
+
CFG_PATH=/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2
.2-2/rpm/BUILD/linux/.config

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 11

+ '[' arm = ppc -a -f
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/linux/arch/powerpc/Kconfig ']'
+ '[' '!' -f
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/linux/.config ']'
+ cd proto
+ make
KERNELDIR=/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_
2.2-2/rpm/BUILD/linux ARCH=arm
echo CC: gcc
CC: gcc
make -C
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/linux
M=/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/ProtoDriver-1.0/proto
LDDINC=/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2
-2/rpm/BUILD/linux/include modules
make[1]: Entering directory
`/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/linux-3.0'
 CC [M]
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/ProtoDriver-1.0/proto/main.o
 LD [M]
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/ProtoDriver-1.0/proto/proto.o
 Building modules, stage 2.
 MODPOST 1 modules
 CC
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/ProtoDriver-1.0/proto/proto.mod.o
 LD [M]
/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/ProtoDriver-1.0/proto/proto.ko
make[1]: Leaving directory
`/home/logic/logic/Logic_BSPs/Linux_3.0/1022853_LogicPD_Linux_BSP_2.2-
2/rpm/BUILD/linux-3.0'
+ cd ../protoUserApp
+ make protoUserApp
gcc -Wl,--rpath=/lib:/usr/lib -Wl,--dynamic-linker=/lib/ld-linux.so.3 -c
-o main.o main.c
gcc -Wl,--rpath=/lib:/usr/lib -Wl,--dynamic-linker=/lib/ld-linux.so.3
main.o -o protoUserApp
+ cd ..
+ exit 0
Build time for protoDriver: 3 seconds

logic@logic-desktop:~/ltib_3_0$

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 12

3. Edit the module load file to select the IO pins for your platform.

The file …/rpm/BUILD/ProtoDriver-1.0/proto/proto_load contains two assignments for the
variable hwOptions, one of which is commented out. The first is for the AM3517 SOM-M2
and the second is for the DM3730/AM3703 Torpedo + Wireless SOM. The file should look
similar to the example below.

...
#Here we perform the processor specific configuration of the driver.
#AM3517
#hwOptions="requestedPinInterrupt=11 requestedPinInterruptAddr=0x48002A2
...

#DM37_TORPEDO
i2cset -f -y 1 0x49 0x0e 0x04
hwOptions="requestedPinInterrupt=118 requestedPinInterruptAddr=0x48002 ...
...

There’s a line unique to the DM37_TORPEDO section which executes an i2cset command. On the
DM3730/AM3703 Torpedo + Wireless SOM, the interrupt pin used in the examples is part of the
audio interface on the PMIC. This command sends a message to the PMIC via I2C that frees that
pin for use. It sends the value 0x04 to register 0x0e in control group 0x49. This sets the
AIF_TRI_EN bit in in the AUDIO_IF register. For additional information about this, please see the TI
TPS65950 Data Manual4.

2.3.3 Install

To use the files, you’ll need to copy them into the target filesystem. Since the LTIB environment
doesn’t come with NFS set up by default, perhaps the easiest way to do this is to SCP the files into
the target filesystem once it has finished booting. Please see Section 2.2.3.2 for instructions about
how to do this.

4 http://www.ti.com/product/tps65950

http://www.ti.com/product/tps65950
http://www.ti.com/product/tps65950

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 13

3 Run Demonstration
The example in this section will use the AM3517 Development Kit to explain how to run the
demonstration. However, the procedures also apply to the DM3730 Torpedo Development kit unless
otherwise specified.

3.1 Connect Multimeter
1. Power down the development kit.
2. Connect the ground lead of the multimeter.

□ For the AM3517 Development Kit, J33 is a good choice.
□ For the DM3730 Torpedo Development Kit, J37 is a good choice.

3. Connect the positive lead to the “pulse” pin specified in the load script.

□ For the AM3517 Development Kit, this will be J39.14.

Figure 3.1: AM3517 Development Kit Connected to Multimeter

□ For the DM3730 Torpedo Development Kit, this will be J33.2.

Figure 3.2: DM3730 Torpedo Development Kit Connected to Multimeter

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 14

3.2 Load Module
1. Mark the scripts as executable.

root@am3517-evm:~# chmod +x proto_*
root@am3517-evm:~#

2. Run the script to load the module.

□ On the AM3517 Development Kit:

root@am3517-evm:~# ./proto_load
[126.492828] proto proto_init_module started...
[126.497924] proto Pulse Pin: 31
[126.560150] proto Interrupt Pin: 11
[126.563842] proto IRQ num: 171
[126.567687] proto proto_init_module ...complete.
root@am3517-evm:~#

□ On the DM3730 Torpedo Development Kit:

DM-37x# ./proto_load
[186102.745635] proto proto_init_module started...
[186102.750732] proto Pulse Pin: 161
[186102.810577] proto Interrupt Pin: 118
[186102.814422] proto IRQ num: 278
[186102.818420] proto proto_init_module ...complete.
DM-37x#

3.3 Run User Application

The user application uses IOCTL (“eye-awk-tol”) calls into the kernel module to request the actions
that are provided as an example. The IOCTL call is a way of sending a direct command to a module
rather than going through the standard read/write interface. These calls are indexed and the user
application example uses a single parameter to select which command it will send to the module.
The command indexes are:

■ 0 – Reset the interrupt counters
■ 1 – Set the IO pin high
■ 2 – Set the IO pin low
■ 3 – Read the state of the IO pin
■ 4 – Show the interrupt counter values
■ 5 – Enable the soft (threaded) interrupts
■ 6 – Disable the soft (threaded) interrupts

The following steps will illustrate each of these commands and how they interact with each other.

1. Check the initial interrupt count.

root@am3517-evm:~# ./protoUserApp 4
Prototype User Application for the 'proto' prototype device driver.
Interrupts> Hard/Soft: 0/0
root@am3517-evm:~#

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 15

2. Set the pin high.

root@am3517-evm:~# ./protoUserApp 1
Prototype User Application for the 'proto' prototype device driver.
root@am3517-evm:~#

3. Verify the output on the multimeter.

□ On the AM3517 Development Kit, you should see approximately 3.3Vmeasured on the
multimeter.

□ On the DM3730 Torpedo Development Kit, you should see approximately 1.8V on the
multimeter.

4. Check the state of the input pin.

root@am3517-evm:~# ./protoUserApp 3
Prototype User Application for the 'proto' prototype device driver.
Pin state: 1
root@am3517-evm:~#

Due to the internal pull-up, the state of the input pin should be 1, as seen above.

5. Set the pin low.

root@am3517-evm:~# ./protoUserApp 2
Prototype User Application for the 'proto' prototype device driver.
root@am3517-evm:~#

6. Verify the output on the multimeter. You should see approximately 0 volts measured on the
multimeter. You may see an actual reading of 0.00 - 0.05 volts.

7. Check the state of the input pin.

root@am3517-evm:~# ./protoUserApp 3
Prototype User Application for the 'proto' prototype device driver.
Pin state: 1

Since there is no electrical connection to the input pin, it will still read as 1.

8. Recheck the interrupt count.

root@am3517-evm:~# ./protoUserApp 4
Prototype User Application for the 'proto' prototype device driver.
Interrupts> Hard/Soft: 0/0
root@am3517-evm:~#

3.4 Unload Module

Run the script to unload the module.

root@am3517-evm:~# ./proto_unload
[831.908966] proto Started...
[831.913543] proto ...complete.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 16

root@am3517-evm:~#

3.5 Connect Feedback Jumper

The feedback jumper will connect the pulse pin which we control to the input pin. We will be able to
read the state of the pulse pin with the input pin and low-going edges will trigger an interrupt. You
should be able to connect the jumper with your multimeter still connected.

■ For the AM3517 Development Kit, connect J39.14 to J39.13.

Figure 3.3: Connect J39.14 to J39.13 on AM3517 Development Kit

■ For the DM3730 Torpedo Development Kit, connect J33.2 to J33.4.

Figure 3.4: Connect J33.2 to J33.4 on DM3730 Torpedo Development Kit

3.6 Reload Module

Run the script to load the module.

■ On the AM3517 Development Kit:

root@am3517-evm:~# ./proto_load
[2234.423980] proto proto_init_module started...
[2234.429107] proto Pulse Pin: 31
[2234.489471] proto Interrupt Pin: 11
[2234.493133] proto IRQ num: 171

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 17

[2234.496978] proto proto_init_module ...complete.
root@am3517-evm:~#

■ On the DM3730 Torpedo Development Kit:

DM-37x# ./proto_load
[186102.745635] proto proto_init_module started...
[186102.750732] proto Pulse Pin: 161
[186102.810577] proto Interrupt Pin: 118
[186102.814422] proto IRQ num: 278
[186102.818420] proto proto_init_module ...complete.
DM-37x#

3.7 Rerun User Application Feedback
1. Check the initial interrupt count.

root@am3517-evm:~# ./protoUserApp 4
Prototype User Application for the 'proto' prototype device driver.
Interrupts> Hard/Soft: 0/0
root@am3517-evm:~#

2. Set the pin high.

root@am3517-evm:~# ./protoUserApp 1
Prototype User Application for the 'proto' prototype device driver.
root@am3517-evm:~#

3. Verify the output on the multimeter.

□ On the AM3517 Development Kit, you should see approximately 3.3V measured on the
multimeter.

□ On the DM3730 Torpedo Development Kit, you should see approximately 1.8V on the
multimeter.

4. Check the state of the input pin. It should be high.

root@am3517-evm:~# ./protoUserApp 3
Prototype User Application for the 'proto' prototype device driver.
Pin state: 1
root@am3517-evm:~#

5. Set the pin low.

root@am3517-evm:~# ./protoUserApp 2
Prototype User Application for the 'proto' prototype device driver.
root@am3517-evm:~#

6. Verify the output on the multimeter.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 18

7. Check the state of the input pin. It should be low.

root@am3517-evm:~# ./protoUserApp 3
Prototype User Application for the 'proto' prototype device driver.
Pin state: 0
root@am3517-evm:~#

8. Check the interrupt count. You should now see a single hard interrupt.

root@am3517-evm:~# ./protoUserApp 4
Prototype User Application for the 'proto' prototype device driver.
Interrupts> Hard/Soft: 1/0
root@am3517-evm:~#

3.8 Enable Threaded Interrupt
1. Enable the threaded interrupt.

root@am3517-evm:~# ./protoUserApp 5
Prototype User Application for the 'proto' prototype device driver.
root@am3517-evm:~#

2. Set the pin high.

root@am3517-evm:~# ./protoUserApp 1
Prototype User Application for the 'proto' prototype device driver.
root@am3517-evm:~#

3. Set the pin low.

root@am3517-evm:~# ./protoUserApp 2
Prototype User Application for the 'proto' prototype device driver.
root@am3517-evm:~#

4. Check the interrupt count. You should now see two hard interrupts and one threaded
interrupt.

root@am3517-evm:~# ./protoUserApp 4
Prototype User Application for the 'proto' prototype device driver.
Interrupts> Hard/Soft: 2/1
root@am3517-evm:~#

3.9 Clear Interrupt Count
1. Clear the interrupt count.

root@am3517-evm:~# ./protoUserApp 0
Prototype User Application for the 'proto' prototype device driver.
root@am3517-evm:~#

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 19

2. Check the interrupt count. It should be 0/0.

root@am3517-evm:~# ./protoUserApp 4
Prototype User Application for the 'proto' prototype device driver.
Interrupts> Hard/Soft: 0/0
root@am3517-evm:~#

3.10 Change Debug Message Zones
1. Check the current state of the debug zone module parameter.

root@am3517-evm:~# cat /sys/module/proto/parameters/proto_debugLevel
13
root@am3517-evm:~#

2. Check the source to find the bit field for the debug zones. They are defined in
…/ProtoDriver-1.0/proto/proto.h. The Enum is named PROTO_DEBUG_ZONES. Choose the
IOCTL zone, which is bit 4.

3. Modify the debug zone module parameter to enable the IOCTL zone.

This is a trick to let bash do the bit manipulation for you. We can combine the current value
with bit 4, which will enable the IOCTL debug zone.

root@am3517-evm:~# echo $((13+(1<<4))) >
/sys/module/proto/parameters/proto_debugLevel
root@am3517-evm:~#

Here you see we are shifting 1 by four bit places and adding it to the current value of 13.
Bit 4 is 16.

4. Rechecking the value, we now see 13+16=29 as expected.

root@am3517-evm:~# cat /sys/module/proto/parameters/proto_debugLevel
29
root@am3517-evm:~#

This seems trivial now, but in larger drivers with larger bit fields, this is a time saver,
especially when activating multiple zones.

5. Set the pin low.

root@am3517-evm:~# ./protoUserApp 2
Prototype User A[3814.823242] proto proto_ioctl
pplication for t[3814.828643] proto proto_ioctl IOCTL Set pin LOW.
he 'proto' prototype device driver.
root@am3517-evm:~#

There are several things to notice here. Before, the command to set the pin state had no
output; we now see two kernel printk statements from our module:

[3814.823242] proto proto_ioctl
[3814.828643] proto proto_ioctl IOCTL Set pin LOW.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 20

The printk statement is one of the most commonly used debug methods. It is the kernel-
space equivalent of adding a printf statement to debug a user-space application. The value
in square brackets is the number of seconds since the kernel booted.

Notice how they cut into the normal output text of the protoUserApp command output.
These messages are printed by different threads and the thread for the printk statements
has a higher priority.

The messages tell us first that the proto_ioctl function of the module was called. The
second message comes from the code that handles setting the output pins IO state. It
received a command to set the pin low. You can see these printk statements in …
/ProtoDriver-1.0/proto/main.c in the proto_ioctl function.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 21

4 A Tour of the Source
Now that we have seen the protoUserApp and proto.ko commands in action, let’s walk through
some of the highlights in the source code. To prevent this document from being excessively long,
please read the first three chapters of the Linux Device Drivers, Third Edition5 publication to
understand the boiler plate portions of this code.

4.1 Load Module

4.1.1 Call Script

The process of actually loading a module into the kernel can be quite simple if there are no options
being specified. In our case, we have a more complicated process, so we abstracted all of the steps
into a script call proto_load.

1. To use the script, simply execute it.

root@am3517-evm:~# ./proto_load
[72.094573] proto proto_init_module started...
[72.099426] proto Pulse Pin: 31
[72.164093] proto Interrupt Pin: 11
[72.167755] proto IRQ num: 171
[72.171600] proto proto_init_module ...complete.
root@am3517-evm:~#

The output messages come from the module itself and tell us which IO pins were used and
which IRQ was allocated.

2. We can verify that the module was loaded with the lsmod command. This tells us the size
of the module and what other models depend on it.

root@am3517-evm:~# lsmod
Module Size Used by
...
proto 6064 0
...
root@am3517-evm:~#

3. This module creates two entries in the device (/dev) directory. We can look at that by
listing that directory along with the ‘-il’ flags to show us a list of the entries along with the
major/minor numbers.

root@am3517-evm:~# ls -il /dev
 2365 drwxr-xr-x 2 root root 620 Jan 1 2000 block
 2043 drwxr-xr-x 3 root root 60 Jan 1 2000 bus
 ...
 3361 lrwxrwxrwx 1 root root Aug 24 10:09 proto -> proto0
 3360 crw-rw-r-- 1 root staff 251, 0 Aug 24 10:09 proto0
 ...
 2127 crw------- 1 root root 10, 130 Jan 1 2000 watchdog
 2319 crw-rw-rw- 1 root root 1, 5 Jan 1 2000 zero
root@am3517-evm:~#

5 http://lwn.net/Kernel/LDD3/

http://lwn.net/Kernel/LDD3/

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 22

In the output, we can see that our module created /dev/proto0 and a symbolic link to it
called /dev/proto. It was assigned a major number of 251.

4. We can see this major number listed in the /proc/device file.

root@am3517-evm:/proc# cat /proc/devices
Character devices:
 1 mem
 4 /dev/vc/0
 4 tty
 4 ttyS
 5 /dev/tty
 ...
 251 proto
 ...

5. There is also a directory created in the sys folder for the module.

root@am3517-evm:~# ls /sys/module/proto/
holders notes refcnt srcversion
initstate parameters sections
root@am3517-evm:~#

This directory contains a great deal of information about how the module was loaded. The
"parameters" section in particular can modify an already running driver as we have already
seen.

4.1.2 Examine Script

This section will take a closer look at the action of the script. The most important part for the
example is the hwOptions variable. This is passed into the driver when it loads to specify which IO
pins we will use and which pin mux registers configure them.

hwOptions="requestedPinInterrupt=11 requestedPinInterruptAddr=0x48002A24...

Next, the insmod command is called to insert the module into the kernel with the options in the
hwOptions variable.

/sbin/insmod ./$module.ko $hwOptions || exit 1

Finally, the mknod command creates the entries in the /dev directory so that the interface to the
module is made available to the system.

mknod /dev/${device}0 c $major 0

The mknod command is preceded and followed by some commands that do some housekeeping.
The rm command removes any old entries that may have been abandoned. The ln command
creates a symbolic link to a non-indexed entry. The chgrp and chmod commands set the
permissions and group membership of the entry.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 23

4.2 Module Source

Aside from the scripts, the body of the source code is in the proto/main.c and proto/proto.h files.

4.2.1 Driver Instance Structure.

The code and executable for a driver is referred to as a module. Instances of that code are referred
to as device drivers. In the proto/proto.h header file, there is a structure that contains everything
an instance of the device driver will need to know while it is running.

struct proto_dev {
 int pinPulse;
 int pinInterrupt;
 int irqNum;
 atomic_t interruptCountHard;
 atomic_t interruptCountSoft;
 bool softInterruptEnabled;
 struct cdev cdev; /* Char device structure */

 int pinPulseSavedMux;
 int pinInterruptSavedMux;
};

Below is a brief explanation of each entry:

■ pinPulse: Index of the output pin
■ pinInterrupt: Index of the input pin
■ irqNum: Stores the IRQ that corresponds to the input pin
■ interruptCountHard: A count of hard interrupts received
■ interruptCountSoft: A count of the threaded (soft) interrupts received
■ softInterruptEnabled: Controls if threaded interrupts are triggered by hard interrupts
■ Cdev: Required structure for implementing a character driver/module
■ pinPulseSavedMux: The saved state of the output pin’s pin mux register
■ pinInterruptSavedMux: The saved state of the input pin’s pin mux register

4.2.2 module_init and module_exit Macros

The command that loads the module needs to know what code to call when loading and unloading
the module. The module_init and module_exit macros identify these functions:

module_init(proto_init_module);
module_exit(proto_cleanup_module);

4.2.3 Device Operations Structure

This structure is passed to the kernel when the module is loaded to define the common API for the
module. You can find it in main.c.

struct file_operations proto_fops = {
 .owner = THIS_MODULE,
 .llseek = NULL,
 .read = NULL,
 .write = NULL,
 .unlocked_ioctl = proto_ioctl,

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 24

 .open = proto_open,
 .release = proto_release,
};

In the example above, the read/write/seek calls are not being used. Only the ioctl call is used and
the proto_ioctl function is called.

4.2.4 IO Pin Setup

In the proto_setup_cdev() function, you will find the code to configure the IO pins for this example.
Below, we will review the process in abstract.

First, the registers that control the pin multiplexer must be adjusted to put the pin in the proper
mode. This is done with the proto_change_mux() function. In this function, you see that a call is
made to ioremap() to map the physical register space into virtual memory so it can be accessed.
The offset into that virtual address spaces is calculated and the functions ioread16() and
iowrite16() are used to save the current value and write the desired value. The current value is
saved so it can be restored when the module is unloaded from memory. This is not required but it
is highly recommended as good kernel etiquette.

Next, the pin must be allocated for use. This is done with the gpio_request_one() function. The
third parameter to this function is a string that is used to identify who requested the IO pin. It is
good to add text with this format: <module name><use>. The pin also needs to be released when
the module is unloaded by calling the gpio_free() function. You can use the debug filesystem
(debugfs) to view these allocations from the command line. The gpio file contains the listing of the
pins and the text labels that were used at allocation. Wherever the debug file system is mounted,
the file is found at …/debug/gpio.

Finally, if the pin needs to be used as an output, it must be specified by calling the
gpio_direction_output() function and by providing an initial state.

4.2.5 Interrupt Setup

If an IO pin is going to be used as an interrupt, two additional functions must be called to configure
it. The OMAP_GPIO_IRQ() function will return the processors IRQ number for the pin being set up.
This value is then used in the interrupt configuration call.

In this example, the interrupt configuration is done with a call to request_threaded_irq(). This sets
up a hard and threaded interrupt at the same time.

irqflags = IRQF_TRIGGER_FALLING;
result = request_threaded_irq(dev->irqNum,
 proto_hardirq,
 proto_irq,
 irqflags,
 DRIVER_NAME_BASE,
 dev);

Hard interrupts are generated first and are where any time-sensitive code can be run. This would
include tasks such as setting acknowledge signals or reading a few bytes from a First In, First Out
(FIFO). In order not to bog down the kernel’s interrupt handler, any additional work is handled by
the threaded interrupt handler, which will only run if it is requested. The last parameter of the
function is a pointer to the driver instance structure.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 25

4.2.6 Move Data between Kernel and User Space

An important point to remember with Linux drivers is that the memory space for kernel operations
and for user operations are kept separate. There are a set of functions that move data between the
two memory spaces in a secure and deterministic way. The __get_user() and __put_user macros
will move a single variable, like an integer or a Boolean. The copy_to_user and copy_from_user
functions will move a set number of bytes to or from a specific address. The latter two are used for
more complex data structures or buffers. Examples of these functions in action can be found in the
IOCTL handling code in proto_ioctl().

retval = __get_user(pinVal, (int __user *)arg);
if ((0 == retval) && ((1 == pinVal) || (0 == pinVal)))
{
proto_debug(DEBUG_IOCTL, "%s IOCTL Set pin %s.", __func__....
gpio_set_value(dev->pinPulse, pinVal);
}

In the example above, we see a call to __get_user. Recall that __get_user is a macro, so it handles
the pointer setup to access its first parameter, which is the destination for the value from a user
space. The second parameter casts the third formal parameter to proto_ioctl as a pointer to a user
space (__user) integer. If the return value is 0, then the transfer was successful and the value in
pinVal is valid.

4.2.7 Interrupts

The interrupts in this example are handled by two functions: proto_hardirq() and proto_irq(). The
first is called immediately following the hardware event that triggers the interrupt by the kernel's
interrupt processor. To avoid bogging that thread down, only the bare minimum of processing is
done in the hard interrupt handler. For example, this is where data could be read from a buffer.
When enough data has been read from the buffer, that data can be processed by a separate thread
with less priority. This additional processing is requested by the return value from the hard
interrupt handler. In the function proto_hardirq(), you can see that there are two possible return
values shown: IRQ_HANDLED and IRQ_WAKE_THREAD. The latter signals to the kernel that
additional work is required and it will release the thread that will run the proto_irq() function.

4.2.8 Debug Zones

All throughout the code, debug messages are present in the form of calls to functions like
proto_debug(). However, their output isn’t always shown in the console because they are set up in
zones that can be optionally activated. Below is an example.

proto_debug(DEBUG_IOCTL, "%s IOCTL Set pin %s.", __func__, ((1 ==
pinVal)?"HIGH":"LOW"));

This is from the PROTO_IO_SET_STATE case in proto_ioctl(). Its first parameter is the zone it is
allocated to. These zones are defined in proto.h.

enum PROTO_DEBUG_ZONES{
 DEBUG_OFF = 0,
 DEBUG_ERROR = BIT(0),
 DEBUG_WARNING = BIT(1),
 DEBUG_INFO = BIT(2),
 DEBUG_INIT = BIT(3),
 DEBUG_IOCTL = BIT(4),

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 26

 DEBUG_IRQ = BIT(5),
 DEBUG_UNUSED4 = BIT(6),
 DEBUG_UNUSED5 = BIT(7),
 DEBUG_ALL = ~0,
};

As you can see, the zones are enumerated values that make up a bit field so their states can be
stored in a single variable. This variable is a module parameter called proto_debugLevel that is
defined in main.c.

int proto_debugLevel = DEBUG_INFO | DEBUG_ERROR | DEBUG_INIT;

Above, you see the initial value of proto_debugLevel enables the INFO, ERROR, and INIT zones.
Thus, the call to proto_debug() we looked at a few lines back wouldn’t be shown initially because
the DEBUG_IOCTL zone wasn’t included. To activate it, we need to change the value of
proto_debugLevel. This is done through the module's entry in the /sys/module directory. In this
case, it is /sys/module/proto and the directory where the module parameters are kept is
/sys/module/proto/parameters. Looking at the entry for proto_debugLevel, we see:

root@am3517-evm:/sys/module/proto/parameters# cat proto_debugLevel
13
root@am3517-evm:/sys/module/proto/parameters#

This is bits 0, 2, and 3. If we wanted to activate the DEBUG_IOCTL zone, we would add bit 4 to
this. Here’s an example of how to do that:

root@am3517-evm:/sys/module/proto/parameters# echo $((13+(1<<4))) >
/sys/module/
proto/parameters/proto_debugLevel
root@am3517-evm:/sys/module/proto/parameters# cat proto_debugLevel
29
root@am3517-evm:/sys/module/proto/parameters#

Now when you execute an IOCTL, you will access the proto module and all the debug messages
that are in the DEBUG_IOCTL zone will be printed.

4.3 User Application Source

The protoUserApp application provides a simple template of how to send IOCTL commands to the
proto.ko module once it has been loaded.

4.3.1 Setup and User Input

The application uses simple numerical commands to specify which command to send to the module.
These commands are specified in protoUserApp /main.h.

#define CMD_RESET 0
#define CMD_FORCE_HIGH 1
#define CMD_FORCE_LOW 2
#define CMD_READ_PIN 3
#define CMD_READ_INT_COUNTS 4

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 27

#define CMD_EN_SOFT_INT 5
#define CMD_DIS_SOFT_INT 6

When the application starts, argc and argv are checked to verify that proper user input has been
specified. The switch block then determines which values are placed in the driverCmd and
driverOption variables. Below is a command to read the interrupt counts; we will use this as an
example.

case CMD_READ_INT_COUNTS:
driverCmd = PROTO_IO_INT_COUNTS;
driverOption = (unsigned long)&intCounts;
break;

In this example, we see driverCmd set to PROTO_IO_INT_COUNTS. This is the IOCTL code defined
in ../proto/proto_ioctl.h and included at the top of the file. Next, driverOption is set to the address
of the intCounts function. With these two values prepared, we can open the driver and send the
command.

4.3.2 Open Driver

The driver is part of the Linux filesystem and is accessed via the /dev directory. The macro
DRIVER_NAME is defined in …/protoUserApp/main.h.

#define DRIVER_NAME "/dev/proto0"

To open the driver, we get a file pointer to it with the open() system call.

fp = open(DRIVER_NAME, 0);
if (-1 == fp)
{
printf("Error: Cannot open %s.\n", DRIVER_NAME);
return ERROR_CANT_OPEN_DRIVER;
}

4.3.3 Send Command to Driver

Once we have a valid file pointer to the driver, we send the values we prepared in Section 4.3.1
using the ioctl() system call:

res = ioctl(fp, driverCmd, &driverOption);
if (res)
{
printf("Error: Driver command failed. err: %d\n", res);
return ERROR_COMMAND_FAILED;
}

It is important to note here that since not all of the commands send literal values, we send the
address of driverOpion as the second parameter of IOCTL(). This allows the module to perform the
address space calculation and move data from user space to kernel space (and vice-versa)
regardless of the command.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 28

4.3.4 Responses from Driver

The final switch statement checks if the command sent is expecting a response from the module.
You will notice that there are no special functions called here. The module is responsible for the
kernel-to-user-space transfer of the data; so, once the IOCTL call is finished, the data has already
been transferred if it was successful.

4.3.5 Close Driver

Finally, it is important to remember to close the driver’s file pointer when it is no longer needed.
Failure to do so is a memory leak.

AN 582 Introduction to Direct Hardware Access with Linux Device Drivers

PN 1024512A Logic PD, Inc. All Rights Reserved. 29

 Appendix A: Install the SSH Server
Your VM workstation image may not have an SSH server installed. Use Aptitude to install the SSH
server.

logic@logic-desktop-am3517:~ $ sudo apt-get install openssh-server
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
 rssh molly-guard openssh-blacklist openssh-blacklist-extra
The following NEW packages will be installed:
 openssh-server
0 upgraded, 1 newly installed, 0 to remove and 176 not upgraded.
Need to get 285kB of archives.
After this operation, 782kB of additional disk space will be used.
Get:1 http://us.archive.ubuntu.com/ubuntu/ lucid-updates/main openssh-
server 1:5.3p1-3ubuntu7 [285kB]
Fetched 285kB in 0s (539kB/s)
Preconfiguring packages ...
Selecting previously deselected package openssh-server.
(Reading database ... 126695 files and directories currently installed.)
Unpacking openssh-server (from .../openssh-server_1%3a5.3p1-
3ubuntu7_i386.deb) ...
Processing triggers for ureadahead ...
ureadahead will be reprofiled on next reboot
Processing triggers for ufw ...
Processing triggers for man-db ...
Setting up openssh-server (1:5.3p1-3ubuntu7) ...
Creating SSH2 RSA key; this may take some time ...
Creating SSH2 DSA key; this may take some time ...
ssh start/running, process 4787

logic@logic-desktop-am3517:~$

	Revision History
	Table of Contents
	1 Introduction
	1.1 Linux_Device_Drivers_Direct_Hardware_Access_Files.tar.gz Directory
	1.2 Overview
	1.3 Background

	2 Load and Build the Source Code
	2.1 Prerequisites
	2.2 TI PSP Environment for AM3517 SOM-M2
	2.2.1 Load
	2.2.2 Build
	2.2.3 Install
	2.2.3.1 NFS
	2.2.3.2 SCP

	2.3 Logic PD LTIB Environment for DM3730/AM3703 Torpedo + Wireless SOM
	2.3.1 Load
	2.3.2 Build
	2.3.3 Install

	3 Run Demonstration
	3.1 Connect Multimeter
	3.2 Load Module
	3.3 Run User Application
	3.4 Unload Module
	3.5 Connect Feedback Jumper
	3.6 Reload Module
	3.7 Rerun User Application Feedback
	3.8 Enable Threaded Interrupt
	3.9 Clear Interrupt Count
	3.10 Change Debug Message Zones

	4 A Tour of the Source
	4.1 Load Module
	4.1.1 Call Script
	4.1.2 Examine Script

	4.2 Module Source
	4.2.1 Driver Instance Structure.
	4.2.2 module_init and module_exit Macros
	4.2.3 Device Operations Structure
	4.2.4 IO Pin Setup
	4.2.5 Interrupt Setup
	4.2.6 Move Data between Kernel and User Space
	4.2.7 Interrupts
	4.2.8 Debug Zones

	4.3 User Application Source
	4.3.1 Setup and User Input
	4.3.2 Open Driver
	4.3.3 Send Command to Driver
	4.3.4 Responses from Driver
	4.3.5 Close Driver

	Appendix A: Install the SSH Server

