
�Starter Development Kit

LogicLoader
User's Manual

��

LogicLoaderTM User’s Manual Logic PN: 1001699

REVISION HISTORY

REV EDITOR REVISION DESCRIPTION APPROVAL DATE
A Bill O’Donnell Release B.O.D 01/21/03
B Bruce Rovner Release B.R. 05/05/03
C Bruce Rovner Release B.R. 07/24/03
D Hans Rempel Editing and Section 6 Update HAR 09/15/03
E James Wicks Document Review JAW 09/30/03

P1 Aaron Stewart Removed references to LoLo API JAW 2/21/05

P2 James Wicks Changed document part number from
70000016 to 1001699 JAW 3/29/05

Please check www.logicpd.com for the latest revision of this manual, errata’s, and additional application
notes.

Logic Product Development All Rights Reserved ii

http://www.logicpd.com/

LogicLoaderTM User’s Manual Logic PN: 1001699

Table of Contents

1 Introduction to LogicLoaderTM .. 1
1.1 Product Brief .. 1
1.2 Acronyms ... 1
1.3 Technical Specifications... 2
1.4 LogicLoader Advantages ... 2

2 LogicLoader (LoLoTM) .. 3
2.1 LoLo Overview ... 3
2.2 LoLo Basics.. 3
2.3 Debugging Advantages with LoLo ... 3
2.4 Manufacturing Advantages with LoLo.. 3
2.5 Ongoing Development with LoLo... 4

3 Block Zero LoaderTM (BoLoTM)... 5
3.1 BoLo Overview... 5
3.2 BoLo Basics ... 5
3.3 Using BoLo... 5

4 The LogicLoader Shell (loshTM)... 7
4.1 Losh Overview ... 7
4.2 Losh Basics.. 7
4.3 Using Losh ... 7
4.4 General Commands ... 9

4.4.1 burn.. 9
4.4.2 date.. 9
4.4.3 erase.. 9
4.4.4 exec ... 10
4.4.5 help .. 10
4.4.6 info ... 10
4.4.7 jump ... 11
4.4.8 load .. 11
4.4.9 source .. 12
4.4.10 w .. 12
4.4.11 x .. 13

4.5 Test Commands... 14
4.5.1 beep... 14
4.5.2 bench-mark.. 14
4.5.3 cache-flush .. 15
4.5.4 cache-on.. 15
4.5.5 cache-off .. 15
4.5.6 funtest .. 15
4.5.7 paint ... 16
4.5.8 play-wav... 16
4.5.9 tlb-flush .. 16
4.5.10 touch-cal .. 17

4.6 File System Commands... 18
4.6.1 cat .. 18
4.6.2 echo ... 18
4.6.3 hd... 18
4.6.4 md5sum... 18

4.7 Directory Commands ... 19
4.7.1 cd ... 19
4.7.2 ls .. 19
4.7.3 mount... 19
4.7.4 pwd .. 20

Logic Product Development All Rights Reserved iii

LogicLoaderTM User’s Manual Logic PN: 1001699

4.8 Video Commands... 21
4.8.1 bitmap .. 21
4.8.2 draw-flag .. 21
4.8.3 draw-test .. 21
4.8.4 slide-show.. 21
4.8.5 video-clear ... 22
4.8.6 video-close... 22
4.8.7 video-open... 23

4.9 Thread Commands .. 24
4.9.1 kill... 24
4.9.2 ps ... 24
4.9.3 sleep .. 24

4.10 Network Commands... 25
4.10.1 bootme... 25
4.10.2 ifconfig ... 25
4.10.3 ping .. 25

5 Downloading ... 26
5.1 Download Overview ... 26
5.2 Understanding the Load Command ... 26
5.3 Understanding the Burn Command ... 29
5.4 Understanding the Jump and Exec Commands .. 29

6 Boot-time Scripts.. 30
6.1 Scripting Overview ... 30
6.2 Boot-time Scripts Description... 30
6.3 Boot-time Script Example... 31

7 Appendix: LwIP License Agreement .. 32

Logic Product Development All Rights Reserved iv

LogicLoaderTM User’s Manual Logic PN: 1001699

Table of Figures

Figure 3.1 BoLo/LoLo Interaction and Boot Sequence... 6
Figure 4.1: Losh User Commands ... 8
Figure 5.1: Downloading to RAM ... 27
Figure 5.2: Downloading to Flash .. 28

Logic Product Development All Rights Reserved v

LogicLoaderTM User’s Manual Logic PN: 1001699

1 Introduction to LogicLoaderTM

1.1 Product Brief
The LogicLoader (bootloader/monitor) provides a full suite of commands for loading operating
systems, configuring hardware platforms, in-field device management, hardware bring-up, custom
applications, manufacturing, and testing. The LogicLoader is a key tool in reducing the time for
development, manufacturing, testing, and in-field device management, resulting in an embedded
product development cycle with less time, less cost, less risk... more innovation.

LogicLoader allows customers to connect to the Card Engine from their host-side terminal
emulation application via the serial debug port on the Application Board or custom peripheral
board. LogicLoader provides a common user interface for multiple input devices and standard
structure for functional testing in manufacturing.

■ Operating System Bootstrap
□ Load an operating system (OS) from:

▪ Compact Flash
▪ Serial connection
▪ Resident Flash Array
▪ Ethernet connection

□ Fully configure a hardware platform for the operating system
▪ Card Engine initialization
▪ Link in custom software functions to initialize hardware before the OS starts
▪ Power-on self test capability

□ Load multiple Operating Systems: Linux, Windows® CE, etc.
See available BSP’s. In-Field Device Management

□ Modify boot actions at run-time using LogicLoader’s configuration utilities
□ Remote device management eases debugging and upgrading

■ Hardware Bring-Up
□ Link in custom test functions to verify custom hardware
□ Use a familiar Unix®-like interface for debugging the device

■ Custom Applications
□ Use LogicLoader to burn and jump to any custom embedded application
□ Link to Logic’s libraries or write custom libraries

■ Download Formats: SREC and ELF
■ Manufacturing and Testing

□ Add in custom functional test software for your specific device needs
□ Take advantage of the fast Ethernet connectivity to reduce manufacturing test time

■ System Requirements:
□ Host with serial terminal, e.g. Windows 2000 or XP with Tera Term.

1.2 Acronyms
CPLD Complex Programmable Logic Device
CF CompactFlash®
DHCP Dynamic Host Configuration Protocol

Logic Product Development All Rights Reserved 1

LogicLoaderTM User’s Manual Logic PN: 1001699

EEPROM Electrically Erasable Programmable Read-Only Memory
ELF Executable Linkable Format
FAT File Allocation Table
GNU GNU is not UNIX
I/O Input/Output
IP Intellectual Property
IP Internet Protocol
JTAG Joint Test Action Group
OS Operating System
RAM Random Access Memory
RISC Reduced Instruction Set Computer
SOC System On a Chip
TCP/IP Transport Control Protocol/Internet Protocol
TFTP Trivial File Transfer Protocol

1.3 Technical Specifications
Please refer to the component specifications and data sheets applicable to your Card Engine:

■ Card Engine CPLD IO Controller Specification
■ Card Engine Hardware Specification
■ Card Engine Processor Hardware Manual (for example the “LH795210 Universal

Microcontroller User’s Guide” or the “Hitachi SuperH RISC Engine SH7727 Hardware
Manual).

1.4 LogicLoader Advantages
The LogicLoader program is a bootloader/firmware-monitor program developed by Logic Product
Development. LogicLoader provides a command-rich shell as well as a bootstrap environment for
a wide range of embedded operating systems such as Linux and Microsoft Windows CE.
LogicLoader includes system initialization functions, system diagnostic functions, a Unix-like
command line interface, and OS download and booting. LogicLoader is field upgradeable.

LogicLoader is the bootstrap and monitor environment that runs on Logic’s development kits.
It provides the following functions:

■ Low level initialization
■ Operating System (OS) recognition, loading, and booting from flash, CompactFlash, and

serial interfaces
■ Diagnostic utilities
■ Flash memory utilities
■ Monitor functions, including a Unix-like command line interface
■ Support for image download via Ethernet or serial port
■ Timer utilities

LogicLoader Features
■ Unix-like shell command interface
■ Debug information via serial port
■ Product-ready bootloader/monitor
■ Load operating system or user developed application program from Ethernet, serial port,

flash, or Compact Flash interfaces
■ Quickly port to new platforms
■ Easy to customize
■ Fully integrated TCP/IP stack with DHCP and ping utilities
■ Network bootstrap support including setup and download using bootp and TFTP protocols
■ Static IP address capable
■ Boot-time script execution

Logic Product Development All Rights Reserved 2

LogicLoaderTM User’s Manual Logic PN: 1001699

Future versions of the LogicLoader will include
■ More configuration options: control of default OS boot image, failsafe image loading, etc…

2 LogicLoader (LoLoTM)

2.1 LoLo Overview
The LogicLoader (LoLo) is a bootloader/firmware-monitor program developed by Logic. LoLo is
designed to initialize an embedded device, load and bootstrap an operating system, and provide
a low-level firmware monitor with debugging functionality.

2.2 LoLo Basics
Most operating systems rely on an underlying bootloader to initialize a computer from its reset
condition. In general, operating systems are designed with the assumption that the system will be
in a specific pre-defined state before the operating system is started. Some example assumptions
might be that system RAM has been initialized and cleared, processor interrupts are disabled,
and a timer has been initialized to provide a system tick for the OS. The LogicLoader program
initializes Logic Product Development’s Card Engine platforms and prepares them for use by an
operating system.

Another basic functionality of LoLo is the capability to upgrade device software after deployment.
This “in-field upgrade ability” requires a bootloader program which is capable of loading an
operating system from various sources as well as committing loaded images to non-volatile
memory. The LogicLoader implements this by giving the system the ability to boot system
software from flash memory, a Compact Flash storage card, or even on another computer
attached to the system’s serial port. The LogicLoader also has the ability to upgrade an existing
operating system residing in system flash.

A major reason for the development of LoLo was the need for an OS and processor independent
bootloader that can interface with a variety of hardware transports. LoLo is designed to build with
any embedded development environment. The GNU tools distributed by Logic are cross-platform
capable.

2.3 Debugging Advantages with LoLo
The LogicLoader implements a feature-rich firmware monitor. Included with LoLo is the
LogicLoader shell, also known as “losh”. Losh is a command interpreter with advanced features
such as command recall and command-line editing. Losh includes many commands designed
specifically to help software and hardware engineers debug low-level interfaces. Some examples
include the ‘x’ and ‘w’ commands that allow formatted data to be read from and written to arbitrary
memory locations. Other commands run specific tests designed to verify Logic’s Card Engine
hardware platforms. Refer to the appropriate section of this manual for a complete description of
available commands.

Developers may code their own test programs using the provided GNU development toolchain
and use the LogicLoader to load and run their software. This provides the ability to verify and
debug hardware interfaces without the overhead of building, downloading, and running large
operating system images.

2.4 Manufacturing Advantages with LoLo
The LogicLoader can be used with a desktop software utility to load a device’s system software
on the manufacturing line. This utility may be customized to suit your desired transfer mechanism
and additional needs. LoLo may also be augmented with functional test software to completely
verify a device before it leaves the manufacturing line. For example, LoLo may be used to launch
a device’s final functional test at the end of a manufacturing line. It may then be used to load the
device’s final software image before packaging. Contact Logic for more information on using LoLo
to streamline manufacturing.

Logic Product Development All Rights Reserved 3

LogicLoaderTM User’s Manual Logic PN: 1001699

2.5 Ongoing Development with LoLo
Logic is constantly improving the LogicLoader. New features are frequently being defined and
implemented to help our customers develop their products faster and easier. Continue to look for
updates on the Logic website. If you have a specific feature request, contact Logic for further
information.

Logic Product Development All Rights Reserved 4

LogicLoaderTM User’s Manual Logic PN: 1001699

3 Block Zero LoaderTM (BoLoTM)

3.1 BoLo Overview
The block zero loader (BoLo) is a fall-back feature on Logic’s ZoomTM Starter Development Kits.
BoLo is a stripped down version of LoLo. It is stored in the first block of flash (block zero) resident
on Card Engines shipped with Zoom Starter Development Kits.

3.2 BoLo Basics
BoLo is a safety precaution for developers using the Zoom Starter Development Kits. Upon boot-
up, most Card Engines begin executing code found in block zero of their resident flash array. If
the code in flash block zero becomes corrupted, the Card Engine becomes useless for software
development without employing special development tools such as a JTAG debugger.

In an effort to protect our customers from accidentally corrupting flash block zero, both the
LogicLoader (LoLo) and the Block Zero Loader (BoLo) verify user-downloaded images that are
destined for flash. If an image is downloaded to the device that would overlap flash block zero,
confirmation from the user is required before proceeding. This prevents users of the Zoom Starter
Development Kits from accidentally corrupting flash block zero. It also serves to warn users of the
potential ramifications of burning any code into flash block zero which is not designed to bring the
system out of reset.

3.3 Using BoLo
Under most operating circumstances, users of Logic’s Zoom Starter Development Kits will never
interact with BoLo. BoLo is designed to look for escape cues or a boot script and, if not seen,
jump to code located in block one of the Card Engine’s system flash. Zoom Starter Development
Kits ship with BoLo loaded into block zero and LoLo loaded into block one of the Card Engine’s
system flash. In this configuration, BoLo will launch LoLo at boot time unless: 1) the user
interrupts BoLo, or 2) a BoLo script is found in the serial EEPROM that does not return. LoLo will
look for a LoLo script in the serial EEPROM to run-- if one is not found, or the script returns after it
executes, the user will be presented with the LogicLoader welcome screen and input prompt.
Please refer to Figure 3.1 BoLo/LoLo Interaction and Boot Sequence.

If the code in block one of the Card Engine’s flash array becomes corrupted or unusable, it is still
possible to update the flash image by entering into BoLo at boot-time. Entering into BoLo is
accomplished by booting the Zoom Starter Kit while continuously transmitting the letter ‘q’ to the
kit’s serial port.

Before BoLo jumps to code in flash block one, it checks the serial EEPROM for a valid BoLo
Script, then it looks to the serial port for approximately two seconds. If the letter ‘q’ is received
during this period of time, BoLo will not jump to flash block one. Instead, BoLo will present the
user with a welcome screen and a menu similar to LoLo’s. This will allow the user to download
new code to the device as well as give the capability to read and write device memory mapped
locations. This behavior is consistent with BoLo’s design as a safety precaution for users of the
Zoom kits.

Without BoLo, the user may find themselves in the position of having to use a JTAG debugging
tool to recover the system from a failed LoLo/flash block one update. BoLo presents the minimum
level of functionality required to recover a system after an image download or update has failed.

BoLo also allows users who do not require the download, debugging, and user interface options
that LoLo provides to replace LoLo with their own application. As the user application evolves, it
may also be updated by BoLo.

IMPORTANT NOTE: To exit BoLo, reset the system or use the ‘jump’ or ‘exec’ command to
launch another program.

Logic Product Development All Rights Reserved 5

LogicLoaderTM User’s Manual Logic PN: 1001699

Figure 3.1 BoLo/LoLo Interaction and Boot Sequence

Boot Event (power on, software
or hardware reset).

Block Zero loader (BoLo)
begins its execution.

Memory is re-mapped.
File system, clock, etc... setup.

START

Initialize processor and
memory.

Copy code section from flash
to RAM.

Begin execution from RAM.
Memory is re-mapped.

File system, clock, etc... setup.

Yes

External RAM initialized,
interrupts disabled, memory map

unchanged, MMU* disabled.

External RAM initialized,
interrupts disabled, memory map

unchanged, MMU* disabled.

(assumes LoLo)

No
(relies on garbage in
 flash to cause a reset)

Look for magic string 'BOLO'
in serial EEPROM

string
'BOLO'
found ?

No
Execute script.

Yes

Script
returns?

Listen for approximately 2
seconds to serial port for the

escape character 'q'.

Escape
character
received

?

Launch BoLo
menu. Yes

No

Cookie
Found

?
Yes

No

Look for
RAM cookie.Yes

Set RAM cookie.

Jump to Logic Loader (LoLo) at
begining of flash block one.

LoLo or
other program
present in flash

?

Look for magic string 'LOLO'
in serial EEPROM

string
'LOLO'
found ?

Execute script.

Yes

Script
returns?

Look for
RAM cookie.

Yes

No

Clear RAM cookie.

Launch LoLo menu.

No

No

 *Not all SOC’s have an MMU.

Logic Product Development All Rights Reserved 6

LogicLoaderTM User’s Manual Logic PN: 1001699

4 The LogicLoader Shell (loshTM)

4.1 Losh Overview
A major feature of the LogicLoader program is its Unix-like command shell: losh. Losh is
patterned after the shell commonly found on Unix-like workstations.

Developers familiar with a Unix-like command line interface should find the losh implementation
familiar and easy to work with. Many of losh’s commands are patterned after their Unix
counterparts and share the same syntax.

4.2 Losh Basics
As in Unix or Linux, losh employs the idea of a standard output stream (stdout). By default, stdout
refers to a Card Engine’s debug serial port. The output of any command that displays information
to stdout (i.e. the ‘cat’ command) can be viewed using the terminal emulation program connected
to the Card Engine’s debug serial port. Likewise, the standard input stream (stdin) by default also
refers to the Card Engine’s debug serial port. In the future the ability to re-route stdout to a video
screen, file, or network connection will be implemented.

The LogicLoader Shell includes a virtual file system that uses standard Unix path names. The
highest-level (or root) directory is designated by the identifier ‘/’. A special sub-directory of the
root with the name ‘dev’ is used to enumerate and interact with system’s various peripherals and
their associated device drivers.

IMPORTANT NOTE: The special directory names ‘.’ and ‘..’ are NOT used in the same way as
on other systems. In Unix or Dos the character ‘.’ specified on the command line refers to the
present working directory. Similarly, the character sequence ‘..’ typically refers to the parent
directory of the present working directory. Losh does not support the ‘.’ directory and it should not
be used to specify a path. The character sequence ‘..’ only works when using the command ‘cd’.
For instance, ‘losh> cd ..’ is a valid command whereas ‘losh> cd ../sub_dir’ is not a valid
command. In general, absolute pathnames must be used when referencing any file that is not
located in the current working directory. The behavior of ‘.’ and ‘..’ may be changed in future
releases, but absolute paths will not.

4.3 Using Losh
The LogicLoader Shell includes a command history feature. This provides users with a
convenient way to repeat commands. Using the up and down arrows, a user may scroll through a
list of previously executed commands. When a desired command is displayed, press the return
key to repeat the command.

Losh has a basic command line editing feature. This feature is like the command line editing
feature in Unix or DOS.

Losh includes a user help feature through the ‘help’ command. Typing ‘help’ followed by any
command name at the losh prompt will display the command’s syntax, usage, and an example.
This may be especially helpful to users who are just becoming familiar with the LogicLoader
Shell.

Commands may be run in the background by adding a ‘ &’ suffix.

Logic Product Development All Rights Reserved 7

LogicLoaderTM User’s Manual Logic PN: 1001699

Figure 4.1: Losh User Commands

beep erase ping
bench-mark exec play-wav
bitmap funtest ps
bootme hd pwd
burn help sleep
cache-flush ifconfig slide-show

 info source
cache-off ls tlb-flush
cat jump
cd kill video-clear
date load video-close
draw-flag md5sum
draw-test mount w
echo paint

cache-on

touch-cal

video-open

x

The commands listed in Figure 4.1 above can be grouped into 7 basic categories:

■ General commands
■ Test commands
■ File system commands
■ Directory commands
■ Video commands
■ Thread commands
■ Network commands

The LogicLoader welcome screen displays a list of commands in the general category. Typing the
entry ‘help’ at the losh prompt will print a listing of the available sub-menus. These sub-menu
listings are intended as a prompt to the user when needed. In LoLo, all commands in all
categories are always available from the losh prompt. In BoLo, only the commands in bold,
above, are available.

Commands are case-sensitive.

IMPORTANT NOTE: The reference for each of losh’s individual commands is included in the
next section. Each command is listed along with any required or optional arguments. Arguments
that are required by a command are noted inside angle brackets ‘< >‘. Arguments that are
optional to the command are designated by square brackets ‘[]’. For instance, the ‘load’
command requires an argument that specifies the type of file to load, but, optionally, a user may
also specify an input stream or filename. The command’s syntax is documented as: load <type>
[source]. In most cases, optional arguments are filled with default values if not specified by the
user. For example, if a user does not specify the ‘source’ argument to the load command, the
load is assumed to come from the standard input stream (stdin).

Logic Product Development All Rights Reserved 8

LogicLoaderTM User’s Manual Logic PN: 1001699

4.4 General Commands

4.4.1 burn

Usage: burn [device]

Examples:
■ burn
■ burn /dev/flash11

The ‘burn’ command programs a binary image that has been loaded using the ‘load’ command
into a flash device ‘device’. The loaded image must have been linked with a start address falling
within the flash device’s address range.

After using the ‘load’ command to store a flash-destined binary image into a temporary RAM
buffer, the image may be permanently programmed into a flash device using this command.

When [device] is not specified the default flash device (usually the boot device) is used. ‘Burn’ will
use information gathered by ‘load’ from the binary image file to decide where in flash the program
should be stored.

As a precautionary measure this command will not re-write the device’s flash block zero unless
manually confirmed that this is the desired action.

IMPORTANT NOTE: Programming flash block zero with incorrect data can make the device
unbootable. See the discussion of the Block Zero Loader in Section 3 above for more information
concerning flash block zero.

4.4.2 date

Usage: date

Example:
■ date

This command displays the internal count of seconds elapsed from when the system was last
reset.

IMPORTANT NOTE: If this value stays at 0, and BoLo is not running, the JTAG jumpers may be
in the wrong position for your current configuration. Check the Hardware User’s Manual for the
correct position.

4.4.3 erase

Usage: erase <addr> <length> [device]

Examples:
■ erase 0x400c0000 1024
■ erase 0x400c0000 1024 /dev/flash11

The ‘erase’ command erases flash device ‘device’ from ‘address’ for ‘length’ bytes. This utility is
used to clear data burned into a flash device. It is not necessary to use ‘erase’ to clear flash
before burning a new image. The ‘burn’ command will erase any of the blocks that fall inside the
image boundaries before programming the new image.

The parameter [device] is optional, but if specified, it must be a flash memory device. The ‘erase’
command will prompt the user before erasing flash block zero.

IMPORTANT NOTE: Erasing is performed in block-sized units, usually 256k bytes. At least one
block will be erased when this command is used.

Logic Product Development All Rights Reserved 9

LogicLoaderTM User’s Manual Logic PN: 1001699

4.4.4 exec

Usage: exec [address -] [kernel command line]

Examples:
■ exec
■ exec 0x400c0000 -
■ exec 0x400c8000 - root=nfs
■ exec root=nfs

The ‘exec’ command is identical to the ‘jump’ command, except that before jumping it disables
the mmu, cache, and interrupts. On card engines that have an mmu, it is necessary to specify a
valid physical address when using the [address] option. Also, it can optionally pass a command
line to the program.

4.4.5 help

Usage: help <test|file|dir|video|net|thread|all|cmd_name>

Examples:
■ help file
■ help load

The ‘help’ command is used to obtain help on other losh commands. Typing ‘help’ alone,
produces a list of command categories. Typing ‘help cmd_category’ prompts losh to list the
commands from that category along with a brief description. Typing ‘help cmd_name’ prompts
losh to print the help available for the requested command.

4.4.6 info

Usage: info [version|arch|mem|net|cpu]

Example:
■ info version
■ info net

The ‘info’ command displays important information about the hardware and software included on
the card engine as shown in the table below.

info argument description

arch default argument, prints just the version information.

cpu print information about virtual memory and the current state of the cpu.

mem prints the version information along with the frame buffer address, the start
and end of the heap, along with important heap statistics.

net prints the version information along with several network statistics.

version prints the version and build information about the version of BoLo/LoLo
currently running on the card engine.

Logic Product Development All Rights Reserved 10

LogicLoaderTM User’s Manual Logic PN: 1001699

4.4.7 jump

Usage: jump [address]

Examples:
■ jump
■ jump 0x400c0000

The ‘jump’ command jumps to a loaded program or [address]. LoLo will continue executing
interrupt handlers and other threads in the background provided the downloaded application does
not disturb its RAM space or clobber its interrupt handling. When the ‘load’ command has been
used to download a program in a recognized format, the program’s starting address is saved and
becomes the default [address] argument for the ‘jump’ command. This is the only case where the
‘jump’ command may be used without any parameters. If there is no recent successful download,
the [address] parameter is required. ‘jump’ functions in the same way as a function call with no
parameters.

4.4.8 load

Usage: load <type> [source]

Examples:
■ load elf
■ load elf /cf/image_file
■ load elf /tftp/my_server:my_file
■ load srec -dhcp

The ‘load’ command is used to load a binary image into memory. The ‘load’ command may be
used to download Executable Linkable Format (ELF) or Motorola S-record (S-rec) formatted
binary files to the device. The default ‘source’ is stdin. The binary file may be read from any of the
byte-stream devices supported by LogicLoader. This currently includes the debug serial port
(stdin), a Compact Flash card, and the network. The ‘load’ command uses address information
contained in the binary image file to determine if the file is destined to be stored in flash or RAM
memory.

If a binary file is destined for RAM, the ‘load’ command will place the image directly into system
RAM and arrange the sections as specified by the file headers. This process is done regardless
of what is currently loaded in system RAM. Programs destined for RAM should be linked so that
images do not interfere with the operation of the LogicLoader. The sample applications provided
with the Zoom Starter Development Kits take into account the location of the LogicLoader’s RAM
space. Developers may use these applications as a reference for building their own applications.

If a program is destined for flash, the ‘load’ command will download the binary file into a
temporary buffer in the system RAM. After the entire file has been received and any verification
performed, the ‘burn’ command can be used to save the image into system flash. The sample
application, provided with the Zoom Starter Kits, is an example of a program that may be linked: it
can be stored in flash and relocate itself from flash to RAM upon start of execution. Developers
may refer to this program as a guide to build and link their own applications.

Flash images are downloaded into RAM space beyond the end of LoLo’s execution area. This is
a temporary buffer area until the ‘burn’ command is given to copy this data from RAM to flash.
The size of this buffer limits the size of data that can be downloaded and burned at one time.
Check the Card Engine’s total RAM and the run-time size of LoLo to determine this limit.

Flash S-record images are stored in this same unused RAM area based on their offset from the
base of flash. This creates a limitation of only being able to write to a window of flash that
corresponds to available RAM. RAM destined S-record images, however, are treated the same
as RAM-based elf loads: they are written to exactly the address that is specified in the S-record.

Logic Product Development All Rights Reserved 11

LogicLoaderTM User’s Manual Logic PN: 1001699

The 'load' command runs an md5sum on images that it loads from the serial port to make sure
that no serial corruption has occurred. The checksum is run on the loaded part of the image, not
the entire file or elf headers. The md5sum of an elf file can be calculated from the development
machine with this process:

1. extract the 'binary' portion of an elf file: objcopy -O binary somefile.elf tmp.raw
Note: must use the correct objcopy. Ie. arm-elf-objcopy, or sh-linux-objcopy

2. run md5sum on the raw portion: md5sum tmp.raw

3. verify the resulting sum against what is reported by 'load elf'

4.4.9 source

Usage: source <filename>

Example:
■ source /cf /STARTUP

The ‘source’ command executes a series of commands stored in <filename> providing scripting
functionality to LoLo. Note that the file system ‘/cf’ must have been mounted before executing the
command given in the example.

4.4.10 w

Usage: w [/[bhw]] <addr> <data>

Examples:
■ w 0x60000000 0x12345678
■ w /w 0x60000000 0x12345678
■ w /b 0x60000000 255

The ‘w’ command is used to write memory [of specified width] at <address> with <data>. This is a
simple poke command.

The width of the access is determined by the [bhw] parameter, where ‘b’ is for a byte-wide
access, ‘h’ for half-word (16 bits) and ‘w’ for word (32-bit) access. The default width, if [bhw] is not
specified, is ‘w’.

The <address> and <data> parameters may be specified in decimal or hexadecimal.
Hexadecimal values are designated by a prefix of ‘0x’.

Improperly aligned accesses will fail, and the user will be notified.

Logic Product Development All Rights Reserved 12

LogicLoaderTM User’s Manual Logic PN: 1001699

4.4.11 x

Usage: x [/[bhw][odux]] <addr> [len]

Example:
■ x /h 0x40000000 64

The ‘x’ command is used to examine memory.

Like the ‘w’ command, the access size may be specified, with the default being ‘w’. An output
format may also be specified. The format argument must be one of [odux], where ‘o’ is octal, ‘d’ is
decimal, ‘u’ is unsigned decimal, and ‘x’ is hexadecimal. If a format argument is not specified, the
default output is hexadecimal.

The [length] parameter specifies the number of bytes, half-words, or words in accordance with the
size requested.

If both a width and a format argument is specified, no space should be placed between them.

Improperly aligned accesses will be adjusted to include the requested starting address.

Logic Product Development All Rights Reserved 13

LogicLoaderTM User’s Manual Logic PN: 1001699

4.5 Test Commands

4.5.1 beep

Usage: beep [playback rate]

Example:
■ beep
■ beep 11025

This command will make 5 beep sounds using the sampling rate specified by [playback rate]. The
default sampling rate is 22050. The beep tone will vary depending on the sampling rate. Not all
sampling rates are supported by all card engines.

The beep command is intended for use as a quick test of the audio output.

4.5.2 bench-mark

Usage: bench-mark [increments] [reps]

Example:
■ bench-mark
■ bench-mark 10000 5

This command runs a simple benchmarking program that times the execution of a short “for” loop.
The timer has millisecond resolution. If an argument is not specified, the default is to perform
10 repetitions of 1,000,000 increments.

This command is meant to give a very general idea of relative execution times; it is not meant as
a thorough processor benchmark.

The command executes the following code:

for (i = 0; i < reps; ++i) {
Get start time.
for (j = 0; j < increments; ++j)

 ;
 Get end time.
}

The time taken to run the inner loop of code is measured and a running record of the maximum,
minimum, and average execution times are kept and then displayed.

For example, perform the following sequence of commands:

losh> cache-off
losh> bench-mark
losh> cache-on
losh> bench-mark

Compare the output of both of the ‘bench-mark’ commands. Note that not all card engines have
cache memory.

Logic Product Development All Rights Reserved 14

LogicLoaderTM User’s Manual Logic PN: 1001699

4.5.3 cache-flush

Usage: cache-flush

Example:
■ cache-flush

This command flushes the processor’s cache. Not all card engines have cache memory

4.5.4 cache-on

Usage: cache-on

Example:
■ cache-on

This command enables the processor’s cache. Not all card engines have cache memory.

4.5.5 cache-off

Usage: cache-off

Example:
■ cache-off

This command disables the processor’s cache. Not all card engines have cache memory.

4.5.6 funtest

Usage: funtest

Example:
■ funtest

This command runs a series of functional tests on the Logic Card Engine’s peripherals. The
‘funtest’ command is primarily used to test during manufacturing. It requires some user attention
to verify operation of I/O devices such as the video driver, the touch screen, and the audio codec.

The tests are performed in the following order:

Serial test: The card engine uses the debug serial port to output the LogicLoader. No functional
test is done at this point.

Cache: The processor’s cache is turned on (where applicable).

Flash: The LogicLoader is burned into flash and, if running, verifies flash. No functional test is
done at this point.

RTC: The real time clock is verified against the tick timer to see that it is operating properly.

LCD: A red square is drawn on a blue background that extends to the edge of the screen and
requires the user to respond.

Touch: A red square is drawn in the top-left corner of the display. A prompt is given to touch the
center of the red square. The test allows 10 seconds to complete this task before timing out. If a
touch is 50 pixels or more from of the center of the box, the touch is considered a failure. A failed
touch will result in a manual calibration of the touch screen similar to the 'touch-cal' command.
After each successful touch, the red square moves to the next corner (clockwise) until all four
corners have been tested.

Logic Product Development All Rights Reserved 15

LogicLoaderTM User’s Manual Logic PN: 1001699

USB: For card engines which support USB device functionality, the user is asked to plug the
USB device connector into a USB host.

Audio: The Codec is initialized and plays three buzzing noises. The test then asks for verification
that the sound was heard.

Ethernet: The Revision ID of the Ethernet controller chip is checked to verify that the device can
be read and written to.

The test then runs a loop back test. This is dependent on a loop back cable being plugged into
the connector.

The user is asked if they would like to change the MAC address.

CompactFlash: An attempt is made to open a CompactFlash card inserted into the Zoom
Starter Kit’s CompactFlash socket. The test reads the information on the card. The Pass/Fail
status of the CompactFlash test is partially dependent on the brand of CompactFlash card used.
During the test, a card made by SanDisk® is expected, but not required.

If the test fails, but the printed model string looks correct for the card used then the test most
likely passed.

EEPROM: A read/write/erase verification of the EEPROM is performed.

Cache: The processor’s cache is turned off (where applicable).

RAM: The interrupts are disabled and the data and address busses running to system RAM are
tested. This test is destructive to some areas of the memory. A reboot is required/recommended
after this test completes.

The results of all tests are then displayed and a reboot is requested.

4.5.7 paint

Usage: paint

Example:
■ paint

This command allows the user to verify the color accuracy and touch-screen calibration by
drawing on the screen. Touching the blue palette causes the paint program to exit.

4.5.8 play-wav

Usage: play-wav <.wav file>

Example:
■ play-wav /cf/testfile.wav

This command will playback a wav file to the audio output. Note that not all wav file formats are
supported by all card engines.

4.5.9 tlb-flush

Usage: tlb-flush

Example:
■ tlb-flush

This command flushes the translation look-aside buffer. Not all card engines utilize a translation
look-aside buffer.

Logic Product Development All Rights Reserved 16

LogicLoaderTM User’s Manual Logic PN: 1001699

4.5.10 touch-cal

Usage: touch-cal

Example:
■ touch-cal

This command is used to calibrate the touch screen. It displays a sequence of black crosshairs
for the user to touch at strategic locations on the screen in order that a calibration matrix can be
generated to transform raw A/D data into screen coordinates. Those coordinates are then verified
by asking the user to touch a sequence of blue, red, then blue crosshairs at the center of the
screen. The transformation used is currently a simple slope/offset calculation. After the
calibration is complete, ‘touch-cal’ automatically launches the ‘paint’ command.

Logic Product Development All Rights Reserved 17

LogicLoaderTM User’s Manual Logic PN: 1001699

4.6 File System Commands

4.6.1 cat

Usage: cat <filename>

Examples:
■ cat foo.c
■ cat /dev/flash11

This command opens a file and sends the contents to the console in its raw binary form.

The ‘cat’ command is intended for use on text files. Using the cat command to dump binary files
may result in the need to reset the terminal.

4.6.2 echo

Usage: echo <string> [filename]

Examples:
■ echo text
■ echo text /dev/serial_7727_scif
■ echo "LOLOecho hello; exit" /dev/serial_eeprom

This command will echo a string to stdout or write to [filename].

The ‘echo’ command is intended for use in script files to send messages to stdout or to files. It is
currently not possible to embed double-quotes into double-quoted strings.

4.6.3 hd

Usage: hd <filename>

Examples:
■ hd foo.elf
■ hd /dev/flash11

The ‘hd’ command displays the contents of a file to stdout in two-column hexadecimal/ascii
representation.

4.6.4 md5sum

Usage: md5sum <filename> [read-size]

Example:
■ md5sum /cf/file.txt

This command calculates the md5 checksum on a file. The read-size parameter can be used to
adjust the size of chunks that the md5sum calculation is performed on, but should not affect the
final result.

Logic Product Development All Rights Reserved 18

LogicLoaderTM User’s Manual Logic PN: 1001699

4.7 Directory Commands

4.7.1 cd

Usage: cd <directory_name>

Examples:
■ cd /cf
■ cat /dev/flash11

The ‘cd’ command changes the working directory.

4.7.2 ls

Usage: ls [dir]

Examples:
■ ls
■ ls /dev

The ‘ls’ command lists the contents of the current directory or the directory named by [dir] and
formats the output into three columns: a flag with the type of file, the file name, and the file size.

The flags are: R - read only, H - hidden, S - system file, D - directory, r - reserved. These are
loosely based on DOS file attributes.

4.7.3 mount

Usage: mount <fstype> [drive addr] <mountpoint>

Example:
■ mount fatfs /cf

This command mounts a file system of type <fstype> located on a device [drive addr] to a local
file system at point <mountpoint>. The default device is Compact Flash. Supported file systems
include the FAT file system.

The LogicLoader contains support for booting from the Compact Flash interface on the card
engine or an external IDE drive. This command makes that interface available to other
commands through the file system. Currently the only supported file system type is the DOS FAT
file system.

After mounting a file system it will appear in the file system tree (viewed with the ‘ls’ command),
and any of the normal file commands can be issued.

For instance, if a CompactFlash card formatted with the FAT file system is placed into the Zoom
Starter Development Kit’s CompactFlash slot and the example ‘mount’ command from above is
issued, a sub-directory named ‘cf’ will be created under the root directory. If an ‘ls’ command is
performed in the root directory, the subdirectory ‘/cf’ should be visible.

The ‘cd’ command can be used to enter the CompactFlash card’s file system (‘cd /cf’). All other
commands are available to act on any files located on the CompactFlash card as well. For
example, if a file named ‘foo.txt’ is stored on the card, the command ‘cat /cf/foo.txt’ will display the
contents of the file.

If an ELF or S-record image is stored on the CompactFlash card, that image may be loaded into
memory using the ‘load’ command.

Logic Product Development All Rights Reserved 19

LogicLoaderTM User’s Manual Logic PN: 1001699

4.7.4 pwd

Usage: pwd

Example:
■ pwd

The ‘pwd’ command prints the present working directory.

Logic Product Development All Rights Reserved 20

LogicLoaderTM User’s Manual Logic PN: 1001699

4.8 Video Commands

4.8.1 bitmap

Usage: bitmap <file_name> [tl_x,tl_y] [br_x,br_y] [display]

Examples:
■ bitmap /cf/test_file.bmp 5
■ bitmap /cf/test_file.bmp 0,0 640,480 5

The ‘bitmap’ command draws a bitmap on the screen. Only Windows expanded device
independent bitmaps are supported. The bitmap should be a standard 8 or 24 bpp with no
compression. The [tl_x, tl_y, br_x, and br_y] parameters (top-left x, top-left y, bottom-right x,
bottom-right y, coordinates respectively) describe the bounds of the bitmap on the screen. These
comma-separated parameters refer to an origin at the top-left of the screen. Specifying a bitmap
file 0,0 640,480 will display a bitmap which covers an entire 640x480 screen. The default is to
show as much of the bitmap as the screen will allow. The ‘video-open’ command determines the
default display and must be issued prior to using this command. Refer to the ‘video-open’
command for a list of supported displays. If the bitmap image file is located on a Compact Flash
card, the ‘mount’ command must have been issued prior to accessing the bitmap file.

4.8.2 draw-flag

Usage: draw-flag

Example:
■ draw-flag

This command draws a flag on the default display to verify that a particular display is working.

4.8.3 draw-test

Usage: draw-test

Example:
■ draw-test

This command draws a test pattern on the default display: three primary colors increase in
intensity from left to right in horizontal gradient bands across the screen, followed by a sequence
of black and white striped rectangles (diagonal, vertical, and horizontal). The entire display is
framed by a sequence of white, red, blue, white 1 pixel wide rectangles during draw-test.

4.8.4 slide-show

Usage: slide-show <configuration_script_file_name>

Example:
■ slide-show /cf/CONFIG.TXT
■ slide-show /cf/CONFIG.TXT &

The ‘slide-show’ command displays a slide show of bitmaps on the default video device using
<configuration_script_file_name>. The slide-show will repeat continuously, so you may prefer to
run this command in the background.

Logic Product Development All Rights Reserved 21

LogicLoaderTM User’s Manual Logic PN: 1001699

Configuration file format:

bitmap_file:[timeout in seconds]:[‘bitmap’ command options]

The default value for [timeout in seconds] is 3. A different value can be specified with a
‘t’ prefix as shown in the example configuration file below. Refer to the ‘bitmap’ command
for its options. All options are delimited with a ‘:’.

Example configuration file:

/cf/LOGOS.BMP:t2
/cf/BS_F.BMP:t2
/cf/BS_H.BMP:t0
/cf/ZOOM.BMP:0,160:240,320
/cf/DEV_P.BMP:t4
/cf/ABC.BMP:t5
/cf/LESS.BMP

4.8.5 video-clear

Usage: video-clear [r|g|b|l|y]

Example:
■ video-clear
■ video-clear g

This command may be used to verify that a particular display is working. It clears a screen by
making it completely gray with no argument, or the appropriate color indicated by the optional
argurment.

4.8.6 video-close

Usage: video-close

Example:
■ video-close

This command closes the default video device.

Logic Product Development All Rights Reserved 22

LogicLoaderTM User’s Manual Logic PN: 1001699

4.8.7 video-open

Usage: video-open <display> <bpp>

Examples:
■ video-open 5 8
■ video-open 6 16

Opens the default video device and activates the video buffer. When first executed, this
command automatically calls touch-cal. The video buffer’s location in RAM can be determined by
using the ‘info mem’ command. The size of this buffer limits the size and color depth of the
display that can be supported by the Card Engine. Check the Card Engine’s total RAM and the
run-time size of LoLo to determine this limit. All Card Engines will support a unique subset of
video configurations due to their different video controller capabilities. Subsequent ‘video-open’
commands will automatically close out the previous display handle.

Supported displays:

0 == LQ039Q2DS53 1 == LQ057Q3DC02
2 == LQ121S1DG31 (12.1) 3 == LM057QCTT03
4 == LM5Q321 5 == LQ64D343 (6.4)
6 == LQ035Q7DB02 (3.5) 7 == LQ10D368 (10.4)

 Supported depths:

 1, 8, 16, 24 bits per pixel.

Logic Product Development All Rights Reserved 23

LogicLoaderTM User’s Manual Logic PN: 1001699

4.9 Thread Commands

4.9.1 kill

Usage: kill <thread id> [thread id]…

Example:
■ kill 4
■ kill 2 3 4 5

The ‘kill’ command stops a thread <thread id> from executing. Thread id’s may be obtained by
running the ‘ps’ command.

The “idle” thread [id 0] cannot be killed. Note: killing the “losh” thread is not recommended.

4.9.2 ps

Usage: ps

Example:
■ ps

This command displays a list of all currently executing threads. It may be used to ascertain
processor usage.

This command also displays each thread’s id number, which can be used as an argument in the
‘kill’ command above.

For the 'ps' command, the columns are, in order: the name of the thread, the thread id, the
thread's run status (R for runnable, B for blocked, and D for delete), a pointer to internal thread
information, the thread's priority, the top of the thread's stack, if blocked - how many ms until it
wakes up, rough count of the number of ms the thread has been on the processor, more internal
thread accounting information, and finally a count of the number of threads waiting on this one to
finish (via thread_join()).

4.9.3 sleep

Usage: sleep <milliseconds>

Example:
■ sleep 100

This command causes losh to sleep for the specified number of milliseconds.

Logic Product Development All Rights Reserved 24

LogicLoaderTM User’s Manual Logic PN: 1001699

4.10 Network Commands

4.10.1 bootme

Usage: bootme

Example:
■ losh> bootme

This command initializes a BOOTME transfer with Platform Builder. This command initializes
networking and then spins the threads which will transfer a Windows CE image from Platform
Builder to our device.

4.10.2 ifconfig

Usage: ifconfig [interface] [<up|down>|<ip netmask gw>]

Example:
■ ifconfig sm0 dhcp
■ ifconfig sm0 192.168.1.115 255.255.255.0 192.168.1.2

This command is used to configure a network interface or print the current interface configuration.

4.10.3 ping

Usage: ping <ip_address> [reps]

Example:
■ losh> ping 127.0.0.1 20

This command will ping a remote host at <ip_address> for [reps] time[s]. The [reps] parameter
has a default value of 1.

Logic Product Development All Rights Reserved 25

LogicLoaderTM User’s Manual Logic PN: 1001699

5 Downloading

5.1 Download Overview
Using the LogicLoader to download any application, operating system, or update to a device
requires an understanding of the interaction between the ‘load’, ‘burn’, ‘jump’, and ‘exec’
commands. The purpose of this section is to explain the interaction of these commands.

5.2 Understanding the Load Command
The purpose of the ‘load’ command is to transfer an executable image to a device. The image
must be in one of the supported formats (ELF or SREC). The ‘load’ command uses information
inherent to the supported formats to determine where in the device’s memory the downloaded
image should be stored. The image must be destined to run from either flash memory, system
RAM, or on-chip SRAM.

If an image is destined for system RAM or on-chip SRAM, the ‘load’ command stores the image
directly to its run-time location. Refer to Figure 5.1: Downloading to RAM for a graphic
representation of this process.

If a downloaded application is destined for flash memory, the ‘load’ command transfers the file
into a temporary RAM buffer on the device. The transferred image may be programmed into flash
using the ‘burn’ command after the transfer is complete. Refer to Figure 5.2: Downloading to
Flash for a graphic representation of this process.

Logic Product Development All Rights Reserved 26

LogicLoaderTM User’s Manual Logic PN: 1001699

Figure 5.1: Downloading to RAM

Host PC

System RAM
external to the SoC

LoLo code, variable,
and stack space

Open RAM

end of LoLo

When using the ‘load’ command to transfer an application destined for RAM, LoLo arranges the
sections of the image directly in system memory. LoLo uses the application's file format (i.e. ELF
or S-rec) information to determine where the sections should be placed. Sections are placed in
RAM regardless of LoLo's own code, variable, or stack space. Ensure the application will not
clobber LoLo's execution environment.

Logic Product Development All Rights Reserved 27

LogicLoaderTM User’s Manual Logic PN: 1001699

Figure 5.2: Downloading to Flash

Host PC

BoLo

LoLo

Open

Flash Memory System RAM
external to SoC

LoLo code, variable,
and stack space

Open RAM

When using the ‘load’ command to transfer an application destined for flash
memory, LoLo uses available system RAM as a buffer where the downloaded
image is temporarily stored. The end result of this command is a copy of the
downloaded image being placed in RAM.

Flash Memory System RAM
external to SoC

Lolo code, variable,
and stack space

The downloaded
image has been

temporarily
stored in RAM.

The ‘burn’ command is used to complete the transfer of the image to flash
memory. This command analyzes the downloaded application and
determines where in flash memory the image is to be saved. If the application
will overlap flash block zero, the user is notified and confirmation is required
before continuing. Otherwise, the ‘burn’ command erases the relevant blocks
of flash and programs the downloaded application into the flash array.

end of LoLo

end of LoLo

BoLo

LoLo

Downloaded
image's final
destination

Logic Product Development All Rights Reserved 28

LogicLoaderTM User’s Manual Logic PN: 1001699

5.3 Understanding the Burn Command
The ‘burn’ command should only be used following the successful download of a binary image
destined for flash. If the ‘load’ command is used to download a flash image, the image is
temporarily stored in a section of system RAM. The ‘burn’ command is responsible for actually
erasing the necessary blocks and programming the downloaded image into flash. Refer to Figure
5.2: Downloading to Flash for more information.

5.4 Understanding the Jump and Exec Commands
The ‘jump’ command is a straight jump to the starting instruction of another program. After a
‘jump’ command is performed, LoLo continues to execute in the background. The LogicLoader
does not set up a run-time environment for a program. It is the software engineer’s responsibility
to ensure that the hardware is setup in the desired manner. The differences between the ‘jump’
and ‘exec’ command are that ‘exec’ can pass a command line argument to the program being
executed and that ‘exec’ disables interrupts. (For complete explanations of both commands, refer
to the General Commands section.)

For example, the sample application that ships with the Zoom Starter Development Kits can be
built to reside in flash. To properly store this program in flash issue the ‘load’ command followed
by the ‘burn’ command. Make note of the address of the program’s starting instruction (for
example: 0x400c0000). Start the program by using either the ‘jump’ or ‘exec’ command, without
an argument, immediately following the ‘burn’ command. Once the image has been burned to
flash, enter the ‘jump’ or ‘exec’ command, specifying 0x400C0000 as the argument at anytime. In
summary, a valid sequence would be:

1.

2.
3.

losh> load elf
This transfers the image to the device (i.e. serial port, network, etc.)
losh> burn
losh> jump or exec
This will work because the load command stored the starting address of the program.
This starting address will be valid until the next reset, or the next use of the ‘load’
command.

After a reset the program may be launched using this command:

losh> jump 0x400c0000 -

or

losh> exec 0x400c0000 -

Logic Product Development All Rights Reserved 29

LogicLoaderTM User’s Manual Logic PN: 1001699

6 Boot-time Scripts

6.1 Scripting Overview
Scripting is a method to execute losh commands automatically by listing them in a script file and
using the command "source" to run the script in the file. This is useful for automating repetitive
command line entries. For example: the command "source /cf/myscript.txt" will execute the script
stored in the file "myscript.txt" on a mounted CompactFlash card.

The 'echo' command can be used to write a script into the EEPROM. To include a new-line in the
first argument to 'echo', it is necessary to enclose the whole argument in double-quotes. The
editing can be a little tricky, and it is recommended to avoid typing errors while creating this script.

Scripting rules are as follows:
■ Start BoLo using valid losh commands
■ Separate commands with a semi-colon
■ Use the command "exit" to end the script (This tells the command interpreter to quit)

After the 4-byte “magic” string comes the body of the script. All of the commands available in
LoLo are also available to the scripts. With the exception, for the moment, that threads can not
be spun in LoLo at boot time. A semi-colon can be used to separate commands, but there must
be a new-line at the very end of the script for the parser to accept it properly.

6.2 Boot-time Scripts Description
It is possible to execute losh commands automatically at startup. This is useful for making the
device jump straight into an operating system or other program immediately when powered. This
functionality is roughly equivalent to running 'source /dev/serial_eeprom' at boot.

LoLo checks the first four bytes of the EEPROM to see if it contains a "magic" string indicating
that the EEPROM contains a script to be executed. The "magic" string for LoLo is "LOLO".

Logic Product Development All Rights Reserved 30

LogicLoaderTM User’s Manual Logic PN: 1001699

6.3 Boot-time Script Example
The following example creates a simple LoLo boot script that first mounts the CompactFlash card
and then runs a second script on the CompactFlash card that automates software.

losh>echo "LOLOmount fatfs /cf; source /cf/AUTOEXEC.BAT; exit;
" /dev/serial_eeprom

Note: A carriage return must be put in after “exit” in the above example in order to tell the
command interpreter to execute the script in the serial EEPROM.

Logic Product Development All Rights Reserved 31

LogicLoaderTM User’s Manual Logic PN: 1001699

Logic Product Development All Rights Reserved 32

7 Appendix: LwIP License Agreement

LogicLoader uses the open source LwIP stack for networking support. The LwIP license requires
the inclusion of the following license to satisfy Condition #2 below:

Copyright (c) 2001, 2002 Swedish Institute of Computer Science. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This file is part of the lwIP TCP/IP stack.

Author: Adam Dunkels <adam@sics.se>

http://www.bigwhistlestudios.com/webmail/compose.php?to=adam@sics.se

	Introduction to LogicLoaderTM
	Product Brief
	Acronyms
	Technical Specifications
	LogicLoader Advantages

	LogicLoader (LoLoTM)
	LoLo Overview
	LoLo Basics
	Debugging Advantages with LoLo
	Manufacturing Advantages with LoLo
	Ongoing Development with LoLo

	Block Zero LoaderTM (BoLoTM)
	BoLo Overview
	BoLo Basics
	Using BoLo

	The LogicLoader Shell (loshTM)
	Losh Overview
	Losh Basics
	Using Losh
	General Commands
	burn
	date
	erase
	exec
	help
	info
	jump
	load
	source
	w
	x

	Test Commands
	beep
	bench-mark
	cache-flush
	cache-on
	cache-off
	funtest
	paint
	play-wav
	tlb-flush
	touch-cal

	File System Commands
	cat
	echo
	hd
	md5sum

	Directory Commands
	cd
	ls
	mount
	pwd

	Video Commands
	bitmap
	draw-flag
	draw-test
	slide-show
	video-clear
	video-close
	video-open

	Thread Commands
	kill
	ps
	sleep

	Network Commands
	bootme
	ifconfig
	ping

	Downloading
	Download Overview
	Understanding the Load Command
	Understanding the Burn Command
	Understanding the Jump and Exec Commands

	Boot-time Scripts
	Scripting Overview
	Boot-time Scripts Description
	Boot-time Script Example

	Appendix: LwIP License Agreement

