

Interfacing to the On-board ADS7843 Touch
Controller
Application Note 175

Andrew Wawra, Hans Rempel, Russell McGuire

Logic Product Development

Published: July 2004

Abstract
By using the procedures presented in this document, you can communicate to the touch chip via
SPI. This document provides flowcharts, basic register settings, and special case scenarios.

This file contains source code, ideas, techniques, and information (the Information) which are Proprietary and Confidential
Information of Logic Product Development, Inc. This information may not be used by or disclosed to any third party except under
written license, and shall be subject to the limitations prescribed under license.

No warranties of any nature are extended by this document. Any product and related material disclosed herein are only furnished
pursuant and subject to the terms and conditions of a duly executed license or agreement to purchase or lease equipments. The
only warranties made by Logic Product Development, if any, with respect to the products described in this document are set forth in
such license or agreement. Logic Product Development cannot accept any financial or other responsibility that may be the result of
your use of the information in this document or software material, including direct, indirect, special or consequential damages.

Logic Product Development may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering the subject matter in this document. Except as expressly provided in any written agreement from Logic Product
Development, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other
intellectual property.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or
additions.

© Copyright 2005, Logic Product Development, Inc. All Rights Reserved.

REVISION HISTORY

REV EDITOR DESCRIPTION APPROVAL DATE

A Russell McGuire Release HAR 7/13/04
B James Wicks Removed SH7750R Reference JAW 7/28/04

C Bruce Rovner

Generalized document for all Sharp
SOMs; Removed barrier function
example; Removed reference to

“Read Pen State Flow Chart”;
General document editing

BR 1/3/06

PN: 70000175 LPD, All Rights Reserved 1

1 Introduction
The following procedures provide examples for communicating to the ADS7843 over the SPI
(Serial Peripheral Interface). For interfacing to the touch chip, see Texas Instruments (Burr-
Brown) ADS7843 data sheet for the complete command set and registers. Also see Logic’s card
engine-specific IO Controller Specification documents for SPI Data and SPI Control Register bit
definitions.

Card engine chipsets applicable to this document include the following:

 LH7A400-10
 LH7A404-11
 LH75401-11

 LH79520-10
 LH79524-10
 SH7760-10

Apart from those listed above, Logic’s card engines use on-chip touch controllers or other
controllers.

2 LH7XXXX: Communicating to the Touch Chip via SPI
This section only applies to the LH7XXXX series of processors from Sharp.

Logic’s IO Controller Specification documents were written before we were aware of this Sharp
application note: “Interfacing the Static Memory Controller with I/O Devices,” available on the
Sharp website http://www.sharpsma.com.

Since then, Logic has added a barrier function between each access to the SPI interface in the
CPLD (Complex Programmable Logic Device) in order to make sure that the chip select line (/CS)
toggles. Please refer to Logic’s Application Note 303: Interfacing to IO Devices via the Static
Memory Controller on LH7xxxx Card Engines for an example of the barrier function that must be
used between accesses to the SPI interface registers in the CPLD. This document can be found
at: http://www.logicpd.com/downloads/684/

PN: 70000175 LPD, All Rights Reserved 2

http://www.sharpsma.com/
http://www.logicpd.com/downloads/684/

3 Touch SPI Driver Flow Charts
These flow charts present the way Logic Product Development has implemented driver code. The
flowcharts may be used as examples for creating custom code. The barrier functions referenced
in section 2 of this document (Application Note 303: Interfacing to IO Devices via the Static
Memory Controller on LH7xxxx Card Engines) are not displayed in the flow charts below.

3.1 Main State Machine: Main ISR Flow Chart

1. Processor receives touch interupt.

2. Read X position (see Figure 3.2, below:
"Read X Position")

3. Read Y position (see Figure 3.2, below:
"Read Y Position")

START

4. Read pen state

8. Register X,Y coordinates and pen state

STOP

5. Is the pen
down?

6. Wait N number of milliseconds

YES

7. Read pen state

NO

Figure 3.1: Main ISR Flow Chart

PN: 70000175 LPD, All Rights Reserved 3

3.2 Detail of Figure 3.1: Steps 2 - 3 in the Main State Machine Main ISR Flowchart

1. Write 0x12 to the SPI CONTROL
register. (See bit definition below)
 bit (0) = 0, codec not selected (SCCS)
 bit (1) = 1, touch selected (SPCS)
 bit (2) = 0, WRITE (SPRW)
 bit (3) = x, RD ONLY BIT
 bit (4) = 1, SPI START (SPST)
 bit (5) = x, RD ONLY BIT

2. Touch TX (0xD0) This first TX is only to
initiliaze registers, basically a dummy
transmit (see Figure 3.3 below).

RETURN

Read X Position

3. Sleep for N milliseconds. Time for data
to stabilize in Touch chipset.

4. Touch TX (0xD0). Setup the 7843 to
sample the screen and hold the pen
coordinates (see Figure 3.3 below).

5. Touch RX, get first 8 bits of data.
These are bits 12-4 of the 12 bit value.

6. Touch RX, get last 4 bits of data. These
are bits 3-0 of the 12 bit value.

7. Write to SPI CONTROL, clear the 7843
Select bit. (SPCS).

1. Write 0x12 to the SPI CONTROL
register. (See bit definition below)
 bit (0) = 0, codec not selected (SCCS)
 bit (1) = 1, touch selected (SPCS)
 bit (2) = 0, WRITE (SPRW)
 bit (3) = x, RD ONLY BIT
 bit (4) = 1, SPI START (SPST)
 bit (5) = x, RD ONLY BIT

2. Touch TX (0x90) This first TX is only to
initiliaze registers, basically a dummy
transmit (see Figure 3.3 below).

RETURN

Read Y Position

3. Sleep for N milliseconds. Time for data
to stabilize in Touch chipset.

4. Touch TX (0x90). Setup the 7843 to
sample the screen and hold the pen
coordinates (see Figure 3.3 below).

5. Touch RX, get first 8 bits of data.
These are bits 12-4 of the 12 bit value.

6. Touch RX, get last 4 bits of data. These
are bits 3-0 of the 12 bit value.

7. Write to SPI CONTROL, clear the 7843
Select bit. (SPCS).

Figure 3.2

PN: 70000175 LPD, All Rights Reserved 4

3.3 Detail of Figure 3.2: Single Data Transmit or Receive From the Touch Chip

3. Read SPI CONTROL register, wait for
bit (5) to go high (indicating registers
loaded).

5. Read SPI CONTROL register, wait for
bit (3) to go high (indicating tranmission
complete).

4. Clear SPI CONTROL Start bit.

6. Return with value from SPI_DATA

Touch_RX

RETURN

2. Write to SPI CONTROL, set Read and
Start bits.

1. Zero the SPI DATA Register

3. Read SPI CONTROL register, wait for
bit (5) to go high (indicating registers
loaded).

5. Read SPI CONTROL register, wait for
bit (3) to go high (indicating tranmission
complete).

4. Clear SPI CONTROL Start bit.

Touch_TX(Data)

RETURN

2. Write to SPI CONTROL, set Start bit.

1. Load the SPI DATA Register with Data

Figure 3.3

PN: 70000175 LPD, All Rights Reserved 5

4 Windows CE Driver Theory of Operation
Software structure of the touch system is as follows. The application layer interfaces with the
GWES (Graphics, Windowing, and Events Subsystem) layer in Windows CE, which in turn loads
the touch driver provided by a third party, in this case, Logic Product Development. This DLL sits
on top of the OAL (OEM Adaptation Layer), also provided by Logic. The DLL talks directly with
the hardware, utilizing the assistance of the OAL only for loading and unloading.

The hardware structure is completed with the card engine CPU communicating with the Logic
CPLD IO device over the local bus. The CPLD handles the SPI communication with the touch
device via the SPI bus.

The touch driver has the responsibility to read the data from the 7843 touch chip; higher layers in
the software model calibrate the data and do conversion from the raw data into screen
coordinates.

Logic’s touch controller ADC has a 12 bit sampling register. Therefore, the range from low end to
high end would ideally be 0 to 4096. Because of offset error introduced by the inherent
resistance of the measuring circuitry, the values will actually be something more like 0 to 4000 or
more generically X to X + Y.

The touch Interrupt Service Thread waits for a touch interrupt to occur, i.e. it waits for a pen-down
event. Once this is detected, control of the SPI bus is sought since it is shared between two
devices. This is done by asserting the touch chip select signal. When ownership of the SPI bus is
obtained, X and Y read commands are sent to the touch chip to read the X and Y point that have
been touched. The state machine, which takes the X and Y readings, ignores the first few
readings to avoid response to spurious touches. This state machine then returns raw data to the
GWES layer in the operating system.

5 Further Reading
For a more in depth understanding of the individual chipsets please refer to the technical
documents furnished by Texas Instruments on the ADS7843, as well as Logic’s documents
applicable to the specific card engine that is being used with the ADS7843.

■ Logic’s up-to-date card engine-specific manuals can be found online at:

http://www.logicpd.com

■ Need additional help? Please contact us through our website, and refer to our technical
discussion group and FAQ’s available online at:

http://www.logicpd.com/support

PN: 70000175 LPD, All Rights Reserved 6

http://www.logicpd.com/
http://www.logicpd.com/support

6 Appendix A: Example Code from Logic’s SH7760-10 Driver

/*!--
 * \file ADS7843_macros.c
 * \brief Memory Utilities
 */
/* © Copyright 2002, Logic Product Development, Inc. All Rights Reserved.
 *
 * NOTICE:
 * This file contains source code, ideas, techniques, and information
 * (the Information) which are Proprietary and Confidential Information
 * of Logic Product Development, Inc. This Information may not be used
 * by or disclosed to any third party except under written license, and
 * shall be subject to the limitations prescribed under license.
 *
 ---/

unsigned short spi_ctrl_reg_shadow, touch_sample, tmp;

#define CPLD_SPI_CONTROL_REG (MEMORY MAPPED ADDRESS OF THE CPLD SPI CONTROL REGISTER)
#define CPLD_SPI_DATA_REG (MEMORY MAPPED ADDRESS OF THE CPLD SPI DATA REGISTER)
#define CPLD_INTERRUPT_REG (MEMORY MAPPED ADDRESS OF THE CPLD INTERRUPT/MASK REGISTER)

#define CPLD_TOUCH_CS 0x0002
#define CPLD_XFER_DONE 0x0008
#define CPLD_SPI_READ 0x0004
#define CPLD_SPI_START 0x0010
#define CPLD_SPI_LOADED 0x0020
#define CPLD_TOUCH_INT 0x0002
#define CPLD_TOUCH_PIRQ 0x0010

#define TOUCH_START 0x80
#define TOUCH_Y 0x50
#define TOUCH_X 0x10
#define TOUCH_8BIT 0x08
#define TOUCH_SERDF 0x04
#define TOUCH_DIS_INT 0x01
#define TOUCH_POWERED 0x03

//#define TOUCH_X_SAMPLE (TOUCH_START | TOUCH_X | TOUCH_SERDF | TOUCH_POWERED)
#define TOUCH_X_SAMPLE (TOUCH_START | TOUCH_X)// | TOUCH_SERDF)
//#define TOUCH_Y_SAMPLE (TOUCH_START | TOUCH_Y | TOUCH_SERDF | TOUCH_POWERED)
#define TOUCH_Y_SAMPLE (TOUCH_START | TOUCH_Y)// | TOUCH_SERDF)

#define TCH_READ_AD_X(v) {

 spi_ctrl_reg_shadow = CPLD_TOUCH_CS;

 WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);
 touch_tx(TOUCH_X_SAMPLE);

 Sleep(1);

 touch_tx(TOUCH_X_SAMPLE);

 touch_sample = touch_rx();

 touch_sample <<= 5;

 touch_sample |= (touch_rx() >> 3);

 touch_sample &= 0x0FFF;

 spi_ctrl_reg_shadow &= ~CPLD_TOUCH_CS;

 WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);
 v = touch_sample;

PN: 70000175 LPD, All Rights Reserved 7

}

#define TCH_READ_AD_Y(v) {

 spi_ctrl_reg_shadow = CPLD_TOUCH_CS;

 WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);
 touch_tx(TOUCH_Y_SAMPLE);

 Sleep(1);

 touch_tx(TOUCH_Y_SAMPLE);

 touch_sample = touch_rx();
 touch_sample <<= 5;

 touch_sample |= (touch_rx() >> 3);

 touch_sample &= 0x0FFF;

 spi_ctrl_reg_shadow &= ~CPLD_TOUCH_CS;

 WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);
 v = touch_sample;

}

#define TCH_READ_PEN_STATE(v) { /* v is 1 if pen is up, else 0 */
 if (!(READ_REGISTER_USHORT(CPLD_INTERRUPT_REG) & CPLD_TOUCH_INT)) v=0;
 else v=1;

 }

void
touch_tx(unsigned char xmit_char)
{

 // write data to data reg
 WRITE_REGISTER_USHORT(CPLD_SPI_DATA_REG,(unsigned short)xmit_char);

// xprintf("Wrote 0x%X to data register\r\n",xmit_char);

// spi_ctrl_reg_shadow |= CPLD_TOUCH_CS;
// WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);

 // set the start bit so the data will load
 spi_ctrl_reg_shadow |= CPLD_SPI_START;
 WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);

// xprintf("Set start bit and touch chip select\r\n");

 // poll load bit (tells us when the data has been loaded in the spi data register)
 while (!(READ_REGISTER_USHORT(CPLD_SPI_CONTROL_REG) & CPLD_SPI_LOADED));

// xprintf("Load bit is set\r\n");

 // clear start bit (will enable transmission/reception)
 spi_ctrl_reg_shadow &= ~CPLD_SPI_START;
 WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);

// xprintf("Cleared start bit, tx should go!\r\n");

 // poll done bit
 while (!(READ_REGISTER_USHORT(CPLD_SPI_CONTROL_REG) & CPLD_XFER_DONE));

PN: 70000175 LPD, All Rights Reserved 8

// xprintf("Finished polling done bit.\r\n");

// spi_ctrl_reg_shadow &= ~CPLD_TOUCH_CS;
// WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);

}

unsigned char
touch_rx(void)
{
unsigned char RetVal;

 // write data to data reg
 WRITE_REGISTER_USHORT(CPLD_SPI_DATA_REG,(unsigned short)0x0000);

// spi_ctrl_reg_shadow |= CPLD_TOUCH_CS;
// WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);

 // set touch CS to 1 and set the start bit so the data will load
 spi_ctrl_reg_shadow |= CPLD_SPI_START | CPLD_SPI_READ;
 WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);

// xprintf("Set start bit\r\n");

 // poll load bit (tells us when the data has been loaded in the spi data register)
 while (!(READ_REGISTER_USHORT(CPLD_SPI_CONTROL_REG) & CPLD_SPI_LOADED));

// xprintf("Load bit is set\r\n");

 // clear start bit (will enable transmission/reception)
 spi_ctrl_reg_shadow &= ~CPLD_SPI_START;
 WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);

// xprintf("Cleared start bit, rx should go!\r\n");

 // poll done bit
 while (!(READ_REGISTER_USHORT(CPLD_SPI_CONTROL_REG) & CPLD_XFER_DONE));

// xprintf("Finished polling done bit.\r\n");

 RetVal = (unsigned char)READ_REGISTER_USHORT(CPLD_SPI_DATA_REG);

// spi_ctrl_reg_shadow &= ~CPLD_TOUCH_CS;
// WRITE_REGISTER_USHORT(CPLD_SPI_CONTROL_REG,spi_ctrl_reg_shadow);

 return RetVal;

}

PN: 70000175 LPD, All Rights Reserved 9

/***
* FUNCTION : tchStateMachine
* DESCRIPTION : Returns whether we have a valid sample
* INPUTS : none, assume we're called because an interrupt happened
* OUTPUTS : Returns whether a valid {x,y} sample has been read.
* DESIGN NOTES :
* CAUTIONS :
***/
static bool
tchStateMachine(void)
{

 unsigned int tmp;

 /* read the X position */
 TCH_READ_AD_X(g_xpos);

 Sleep(3); /* sleep for around 3mS */

 /* read the Y position */
 TCH_READ_AD_Y(g_ypos);

 /* get the pen state */
 TCH_READ_PEN_STATE(tmp);

 /* if the pen is down, we put a delay here in-between samples */
 if (!tmp) {
 status = TCH_PEN_DOWN;
 Sleep(20);

 /* adding this here because sometimes the pen goes up after reading the value */
 TCH_READ_PEN_STATE(tmp);

 if (tmp) {
 status = TCH_PEN_UP;
// TCHMSG(1,(TEXT("Xpos - 0x%X, Ypos - 0x%X\r\n"),g_xpos,g_ypos));
 }

 } else {
 status = TCH_PEN_UP;
// TCHMSG(1,(TEXT("Xpos - 0x%X, Ypos - 0x%X\r\n"),g_xpos,g_ypos));
 }

 /* set up to get another sample */
 state = WAIT_INTR;

 /* return */
 return 1;

}

PN: 70000175 LPD, All Rights Reserved 10

	1 Introduction
	2 LH7XXXX: Communicating to the Touch Chip via SPI
	3 Touch SPI Driver Flow Charts
	3.1 Main State Machine: Main ISR Flow Chart
	3.2 Detail of Figure 3.1: Steps 2 - 3 in the Main State Mach
	3.3 Detail of Figure 3.2: Single Data Transmit or Receive Fr

	4 Windows CE Driver Theory of Operation
	5 Further Reading
	6 Appendix A: Example Code from Logic’s SH7760-10 Driver

