

PN 1009736C Logic PD, Inc. All Rights Reserved. i

LogicLoader™ User Manual
(LogicLoader Version 2.4)

Logic PD // Products
Published: April 2008
Last revised: March 2011

This document contains valuable proprietary and confidential information and the attached file contains source code, ideas, and
techniques that are owned by Logic PD, Inc. (collectively “Logic PD’s Proprietary Information”). Logic PD’s Proprietary Information
may not be used by or disclosed to any third party except under written license from Logic Product Development Company.

Logic PD, Inc. makes no representation or warranties of any nature or kind regarding Logic PD’s Proprietary Information or any
products offered by Logic PD, Inc. Logic PD’s Proprietary Information is disclosed herein pursuant and subject to the terms and
conditions of a duly executed license or agreement to purchase or lease equipment. The only warranties made by Logic PD, Inc., if
any, with respect to any products described in this document are set forth in such license or agreement. Logic PD, Inc. shall have no
liability of any kind, express or implied, arising out of the use of the Information in this document, including direct, indirect, special or
consequential damages.

Logic PD, Inc. may have patents, patent applications, trademarks, copyrights, trade secrets, or other intellectual property rights
pertaining to Logic PD’s Proprietary Information and products described in this document (collectively “Logic PD’s Intellectual
Property”). Except as expressly provided in any written license or agreement from Logic PD, Inc., this document and the information
contained therein does not create any license to Logic PD’s Intellectual Property.

The Information contained herein is subject to change without notice. Revisions may be issued regarding changes and/or additions.

© Copyright 2011, Logic PD, Inc., All Rights Reserved.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. ii

Revision History
REV EDITOR REVISION DESCRIPTION LoLo Ver. APPROVAL DATE

A SB, JCA

Started with manual for LoLo 2.3 (PN 70000016) with the following changes:
- Added Section 1.7: LogicLoader Labs
- Section 5.2: updated ‘burn’ command
- New Section 5.3: added ‘dd’ command
- Section 5.4: updated ‘erase’ command
- Removed Section on booting from NAND
- New Section 10 to describe partitions
- New Section 11 to describe File Systems
- Section 12: updated for new approach to YAFFS 2.4.0 SB 04/21/08

B EN, JCA

- Section 1.1 & 1.2: Replaced Product Brief with text;
- Section 4.3: Added section describing booting from NAND;
- Section 4.4: Added section describing booting from SD/MMC;
- Section 4.7.2: Added explanation of YAFFS 1 and YAFFS 2;
- Section 5.3: Indicated manufacturing usage scenario for the ‘dd’ command;
- Section 6.1: Included description of the ‘/load’ file;
- Section 9.1: Updated introduction to config block; Identified the location of the config
block in boot scenarios of NOR flash, NAND flash, and SD/MMC
- Removed Section “Writing RAM-Partition Table on the Device”
- Section 11.4.1: Included information on mounting an entire device
- Section 12.3: Moved the erase step before the partition step 2.4.9 DE 10/26/09

C EN

- Section 2.3: Added debugging examples and descriptions
- Section 5.3: Clarified NAND page size including or excluding spare area ; Added
clarification for “chunk” vs. “page”
- Section 7.4: Added the “c” shell setting
- Section 11.2: Updated the description of the mount command
- Section 11.4.3: Added section describing YAFFS checkpointing & unmount 2.4.14 JCA 03/17/11

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. iii

Table of Contents
1 Introduction to LogicLoader™ .. 1

1.1 Overview .. 1
1.2 Product Features .. 1
1.3 Acronyms ... 1
1.4 Technical Specifications... 2
1.5 LogicLoader Command Description Manual .. 2
1.6 LogicLoader Addendums ... 2
1.7 LogicLoader Labs ... 2

2 LogicLoader .. 3
2.1 LogicLoader Overview ... 3
2.2 LogicLoader Basics .. 3
2.3 Using LogicLoader for Debugging ... 3
2.4 Manufacturing Advantages with LogicLoader .. 4

3 The LogicLoader Shell (losh) .. 5
3.1 Losh Overview ... 5
3.2 Losh Basics .. 5

3.2.1 Using Losh ... 5
4 Flash Devices and LogicLoader.. 7

4.1 NOR Addressing .. 7
4.2 Booting from NOR .. 7
4.3 Booting from NAND .. 7
4.4 Booting from SD/MMC ... 7
4.5 NAND Addressing .. 7
4.6 NAND Bad Blocks .. 8
4.7 NAND Programming .. 8

4.7.1 Skip Bad Block Method ... 8
4.7.2 YAFFS Overview ... 8

5 Block Devices ... 10
5.1 Using Block Reference... 10
5.2 burn .. 10
5.3 dd ... 10
5.4 erase .. 11
5.5 info .. 11
5.6 update .. 11

6 Program Loading .. 12
6.1 Understanding the ‘load’ Command ... 12

6.1.1 Using TFTP as a Source ... 14
6.2 Understanding the ‘burn’ Command .. 15
6.3 Understanding the ‘jump’ and ‘exec’ Commands .. 15

6.3.1 The ‘jump’ Command .. 15
6.3.2 The ‘exec’ Command ... 15
6.3.3 Command Example Using ‘load’ and ‘burn’ with ‘jump’ or ‘exec’ .. 16

6.4 Understanding the ‘update’ Command .. 16
7 Scripting .. 18

7.1 Scripting Overview ... 18
7.1.1 Scripting Rules... 18

7.2 Launching Scripts ... 18
7.3 Persistent Script Storage ... 18

7.3.1 Persisting Scripts with the Echo Command .. 18
7.3.2 Serial EEPROM Scripts ... 19
7.3.3 Configuration Block Scripts ... 19

7.4 Settings that Affect Scripts ... 19
7.5 Using Boot-time Scripting... 19

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. iv

7.5.1 Boot-time Script Guidelines ... 20
7.5.2 Boot Script Magic Strings .. 20
7.5.3 Exiting a Boot Script .. 20
7.5.4 Understanding the Echo Command .. 20
7.5.5 Boot-time Script Example .. 20

7.6 Conditional Scripting and Variables ... 21
7.6.1 Variables .. 21

8 Video Interface .. 26
8.1 Video Interface Overview ... 26
8.2 Using the Video Interface after Initialization... 26

9 Configuration Block ... 27
9.1 Configuration Block Overview .. 27

9.1.1 Initializing ... 27
9.1.2 Scripting ... 27
9.1.3 Video .. 27
9.1.4 Serial with the Configuration Block .. 27
9.1.5 Ethernet ... 27

10 Partitions ... 29
10.1 Partitions Overview .. 29
10.2 Partition Creation in the RAM-Partition Table .. 30
10.3 Partition Removal from RAM-Partition Table ... 30

11 File Systems .. 32
11.1 File System Types .. 32
11.2 Mount Command .. 32
11.3 Mounting fatfs ... 32

11.3.1 Legacy Syntax ... 32
11.4 Mounting YAFFS .. 33

11.4.1 Mounting YAFFS on NAND ... 33
11.4.2 Mounting YAFFS on NOR ... 33
11.4.3 Unmounting YAFFS ... 33
11.4.4 Legacy Syntax ... 34

12 YAFFS (Yet Another Flash File System) .. 35
12.1 YAFFS Overview .. 35
12.2 Working with YAFFS in LogicLoader ... 35

12.2.1 Developing a Partition Scheme ... 35
12.2.2 Formatting YAFFS Partitions ... 36
12.2.3 Mounting the Partition .. 36
12.2.4 Accessing YAFFS Partitions in an OS .. 37

12.3 Summary .. 37
Appendix: LwIP License Agreement ... 38

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. v

Table of Figures and Tables
Figure 3.1: 'ls' Command Columns ... 6
Figure 6.1: Downloading to RAM .. 13
Figure 6.2: Downloading to Flash ... 14

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 1

1 Introduction to LogicLoader™

1.1 Overview

LogicLoader™ is a bootloader/monitor program developed by Logic Product Development that
initializes an embedded device and is capable of loading both operating systems and
applications. In addition, LogicLoader provides a full suite of commands for hardware
configuration, in-field device management, hardware debug, manufacturing, and test.

Customizable and extendable at the user level, LogicLoader is built for multiple processor
platforms (ARM, ColdFire, i.MX, SH, XScale), with support for both CompactFlash FAT and
YAFFS file systems. LogicLoader contains a fully integrated TCP/IP stack—with DHCP and TFTP
support—providing network bootstrap support. Greater customization to your specific needs can
be achieved through conditional scripting and the ability for LogicLoader to drive LCD displays to
show custom splash screens, making LogicLoader an excellent tool to fast forward your
embedded product design.

1.2 Product Features
Operating System (OS) Bootstrap

■ Load multiple OSes (Microsoft Windows Embedded CE, Linux, etc.)
■ Load an OS from CompactFlash, resident flash array, serial connection, or Ethernet

connection
■ Fully configure a hardware platform for the OS
■ Activate custom software functions to initialize hardware before the OS starts
■ Power-on self test capability

In-field Device Management
■ Modify boot actions at run-time
■ Remote device management eases debugging and upgrading

Hardware Debug
■ Link in custom test functions to verify custom hardware
■ Use a familiar UNIX-like interface for debugging the device
■ Ethernet-based download and debug interface for Windows Embedded CE

Custom Applications
■ Use LogicLoader to load, burn, and jump to any custom embedded application

Manufacturing and Test
■ Add in custom functional test software for your specific device needs
■ Take advantage of the fast Ethernet connectivity to reduce manufacturing test time

Download Formats
■ SREC
■ ELF
■ BIN
■ RAW

1.3 Acronyms
API Application Programming Interface
BIN Microsoft BIN file format
CPLD Complex Programmable Logic Device
CF CompactFlash®
DHCP Dynamic Host Configuration Protocol
EEPROM Electrically Erasable Programmable Read-Only Memory
ELF Executable Linkable Format
FAT File Allocation Table

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 2

FATFS File Allocation Table File System
GPIO General Purpose Input Output
GNU GNU is not UNIX
IO Input/Output
IP Internet Protocol
JTAG Joint Test Action Group
LAN Local Area Network
LwIP Lightweight implementation of the TCP/IP protocol stack
OS Operating System
RAM Random Access Memory
RAW RAW file format, e.g., absolute binary
RISC Reduced Instruction Set Computer
SOC System on Chip
SOM System on Module
SRAM Static Random Access Memory
SREC Motorola S-Record file format
TCP/IP Transport Control Protocol/Internet Protocol
TFTP Trivial File Transfer Protocol
YAFFS Yet Another Flash File System

1.4 Technical Specifications

Please refer to the component specifications and data sheets applicable to your SOM:

■ SOM Hardware Specification
■ Applicable Processor Manual

1.5 LogicLoader Command Description Manual

For a complete description of LogicLoader’s ‘losh’ commands, please see the LogicLoader
Command Description Manual available from Logic’s website:
http://support.logicpd.com/downloads/1095/. The LogicLoader Command Description Manual
explains how to use each LogicLoader command.

1.6 LogicLoader Addendums

Logic has written a SOM-specific addendum for each SOM that runs LogicLoader. LogicLoader
Addendums are located under the “User Manuals” heading on Logic’s Registered Products
downloads page.

1.7 LogicLoader Labs

Logic has written informal labs that provide a step-by-step introduction to basic LogicLoader
commands and usage for specific SOM platforms. These labs are available for download under
the “User Manuals” heading on Logic’s Registered Products downloads page.

http://support.logicpd.com/downloads/1095/�

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 3

2 LogicLoader

2.1 LogicLoader Overview

The LogicLoader (LoLo) is a bootloader/firmware-monitor program developed by Logic Product
Development. LogicLoader is designed to initialize an embedded device, load and bootstrap an
operating system, and provide a low-level firmware monitor with debugging functionality.

2.2 LogicLoader Basics

Most operating systems rely on an underlying bootloader to initialize a device from its reset
condition. In general, operating systems are designed with the assumption that the system will be
in a specific pre-defined state before the operating system is started. Some example assumptions
might be that system RAM has been initialized and cleared, processor interrupts are disabled,
and a timer has been initialized to provide a system tick for the OS. The LogicLoader program
initializes Logic Product Development’s SOM platforms and prepares them for use by an
operating system.

Another basic function of LogicLoader is the capability to upgrade device software (flash memory,
CPLD firmware, serial EEPROM contents) after deployment. This “in-field upgrade” ability
requires a bootloader program that is capable of loading software images from various sources,
as well as committing loaded images to non-volatile memory. LogicLoader implements this by
giving the system the ability to load system software from flash memory, a CompactFlash storage
card, a Local Area Network, or from a device attached to the system’s serial port. LogicLoader
also has the ability to upgrade an existing operating system residing in system flash.

LogicLoader was developed to fulfill the need for an OS- and processor-independent bootloader
that can interface with a variety of hardware transports. The GNU development tool chain used to
build LogicLoader is cross-platform capable.

2.3 Using LogicLoader for Debugging

LogicLoader implements a feature-rich firmware monitor, including the LogicLoader shell, also
known as “losh.” Losh is a command interpreter providing control over system state prior to
loading an OS image. It has features such as command recall, command line editing, automated
control via scripting, and diagnostic routines.

Losh includes many commands designed specifically to help software and hardware engineers
debug low-level interfaces. Some examples include:

■ Read and write any arbitrary memory address using the ‘x’, and ‘w’ commands.

■ Read and write any arbitrary register in a peripheral using ‘x’ and ‘w’ specifying a
device in the ‘filename’ argument.

■ Automatic LogicLoader runtime integrity check. When idle, LogicLoader will
continually perform a checksum on itself to test for any corruption. If corruption is
detected, a warning will be printed and the shell variable ‘SYS_INTEGRITY_FAIL’ will
be incremented for each failure. ‘SYS_INTEGRITY_PASS’ is incremented for each
correct checksum calculated.

■ Memory detection. Memory detection is performed at LogicLoader boot time. The
detected memories will be indicated in the ‘MEM_xxxxxx’ shell variables.

■ Manufacturing ID information. LogicLoader will read the contents of the ID chip on the
SOM and populate the shell variables ‘ID_xxxxxx’. Also, ‘info id’ can be used to read
the ID chip information.

■ Device type and state information. ‘info device’ prints the type of device installed, and
the state and capabilities of that device.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 4

■ Memory layout information. ‘info mem’ prints the memory map location of every
memory device. Info mem provides memory geometry information including bad
block information of NAND flash devices. Info mem also indicates LogicLoader’s
memory usage.

All commands return a value to the command line that can be used to conditionally evaluate the
command result. Refer to the LogicLoader Command Description Manual for a complete
description of all available commands.

Developers may code their own test programs using the provided GNU development tool chain
and use the LogicLoader to load and run their software. This provides the ability to verify and
debug hardware interfaces without the overhead of building, downloading, and running large
operating system images.

2.4 Manufacturing Advantages with LogicLoader

LogicLoader can be used with a desktop software utility to load a device’s system software on the
manufacturing line. This utility is customizable to suit your desired transfer mechanism and
additional needs. LogicLoader can also be augmented with functional test software to completely
verify a device before it leaves the manufacturing line. Here is an example scenario: LogicLoader
launches a device’s final functional test at the end of a manufacturing line, and then loads the
device’s final software image before packaging. Contact Logic for more information on using
LogicLoader to streamline manufacturing.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 5

3 The LogicLoader Shell (losh)

3.1 Losh Overview

Losh is a command interpreter similar to those found in Unix environments. Losh implements a
rudimentary network and file system command set, enhanced with custom diagnostic and
memory manipulation commands for debugging hardware.

Developers familiar with a Unix-like command line interface should find the losh implementation
familiar and easy to work with. Many of losh’s commands are patterned after their Unix
counterparts and share the same syntax.

3.2 Losh Basics

Losh uses a standard output stream (stdout). By default, stdout refers to a SOM’s debug serial
port. The output of any command that displays information to stdout (e.g., the ‘cat’ command) can
be viewed using the terminal emulation program connected to the SOM’s debug serial port.
Likewise, the standard input stream (stdin) by default also refers to the SOM’s debug serial port.

The LogicLoader shell includes a virtual file system that uses standard Unix path names. The
highest-level (or root) directory is designated by the identifier ‘/’. A special sub-directory of the
root with the name “dev” is used to enumerate and interact with the system’s various peripherals
and their associated device drivers.

3.2.1 Using Losh

The losh shell includes a basic command line editing feature and a command history feature. This
provides you with a quick way to repeat commands. Using the up and down arrow keys, you can
scroll through the list of previously executed commands. When a desired command is displayed,
press the return key to repeat the command. The right and left arrow keys move the cursor
anywhere within the current line. This allows you to modify, delete, or insert text anywhere in the
current line without having to “backspace” the entire line and re-type commands.

Losh includes a user help feature through the ‘help’ command. Typing ‘help’ followed by any
command name at the losh prompt will display the command’s syntax, usage, and an example.
This may be especially helpful to users who are just becoming familiar with the LogicLoader shell.

Commands may be run in the background by adding an ‘&’ suffix.

3.2.1.1 Understanding the ‘ls’ Command

The ‘ls’ command lists the contents of the current directory. A sample terminal output that results
from running the ‘ls’ command is shown below:

 losh> ls
 : NK.BIN 4268863
 D : DOC 0
 D : BOOT 0

In this example, the columns displayed are (in order from left to right): entity attribute, entity
name, and entity size. See Figure 3.1, below.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 6

 losh> ls
 : NK.BIN 4268863
 D : DOC 0
 D : BOOT 0

entity attribute entity name entity size

Figure 3.1: 'ls' Command Columns

The first column, entity attribute, can be blank, “D”, “S”, “R”, “r” or “H”. A blank field indicates a
normal attribute, a “D” indicates a directory attribute, an “S” indicates a device driver attribute, an
“R” indicates a read-only attribute, an “r” indicates that reserved bits are set, and an “H” indicates
a hidden attribute.

The second column, entity name, is the name of the entity as it exists on the file system. This
name should be used, with attention to case, in any commands referencing the entity.

The third column, entity size, indicates the size (in bytes) of the entity on the storage device.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 7

4 Flash Devices and LogicLoader

LogicLoader supports both NOR and NAND flash devices; however, the usage is entirely
dependent upon the available flash type(s) on your SOM (i.e., some Logic SOMs only have
NAND, some only have NOR, and some have both NAND and NOR). NOR flash devices are
linear, memory-mapped devices that can be read in a similar manner to any random access
memory (RAM) device. Programming NOR devices requires a programming algorithm.
LogicLoader supports NOR flash devices conforming to the Common Flash Interface (CFI)
specification, which includes most NOR flash devices used today. NAND flash devices are block
devices that require read and write algorithms. As of the time of writing this document, there is no
common algorithm used to read or write to NAND flash devices; every manufacturer requires a
unique algorithm.

4.1 NOR Addressing

Reading from a NOR device occurs in a similar manner to any RAM device. Writing to NOR
devices, however, is a little more complicated. The default state for NOR flash is for each bit to be
set at “1”. Halfwords can be used to set bits from “1” to “0”; however, writing to a NOR device can
only set bits from “1” to “0”. In order to set a bit from “0” to “1”, the entire block containing that bit
has to be erased (i.e., all bits in that block are returned to their default state of “1”).

Despite the similar addressing scheme between NOR flash and RAM devices, NOR flash cannot
be used as a RAM device because NOR is block-organized to allow for erasing. The fact that
NOR can be read as RAM is only used at boot-time, when it can be used as a permanent byte
addressed storage device. When NOR is used as a file system device, block addressing is used.

4.2 Booting from NOR

When LogicLoader is stored in NOR flash, it relocates itself at boot time from flash memory to
system SDRAM and then spends the remainder of its run-time executing out of system SDRAM.

4.3 Booting from NAND

When LogicLoader is stored in NAND flash, it requires a pre-loader called NoLo. NoLo is
responsible for locating LogicLoader in the NAND flash and then copying LogicLoader to
SDRAM. For platforms that boot from NAND, LogicLoader is located in a flash file system on the
NAND device and is named ‘lboot.elf’. Once LogicLoader is in SDRAM, it spends the remainder
of its run-time executing out of SDRAM.

4.4 Booting from SD/MMC

When LogicLoader is stored on an SD/MMC card, LogicLoader requires the NoLo pre-loader to
boot. The exact file name of the NoLo file is platform dependent and is dictated by the CPU boot
ROM. NoLo is responsible for locating LogicLoader on the SD/MMC card and then copying
LogicLoader to SDRAM. For platforms that boot from an SD/MMC card, LogicLoader is located in
a file system on the SD/MMC device and is named ‘lboot.elf’. Once LogicLoader is in SDRAM, it
spends the remainder of its run-time executing out of SDRAM.

4.5 NAND Addressing

NAND devices use an addressing scheme of block, page, and sector. A block is the smallest
erasable chunk of memory, whereas pages and sectors are merely mechanisms that describe the
addressing hierarchy (blocks are made up of pages; pages are made up of sectors). The number
of blocks, pages, and sectors will be unique for each particular NAND flash device. Some NAND
devices may not have any sectors, in which case addressing is performed using only block and
page.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 8

NAND devices currently come in two flavors where addressing is concerned: small page and
large page. Small page devices have a page size of 512 bytes; large page NAND devices have a
page size of 2048 bytes. Larger page sizes tend to offer higher densities of NAND flash.

Whether the smallest chunk of data is addressed using a page or a sector, there is a spare area
associated with that smallest chunk. This spare area will be 16 bytes for small page type devices
and 64 bytes for large page devices. The spare area is used by software to manage:

■ Error correction codes to correct single bit errors and to identify two or more bit
errors.

■ Manufacturer bad block identification.
■ Flash file system metadata. The specific metadata will be unique to the particular

flash file system used. LogicLoader dedicates a portion of the NAND spare area to
YAFFS.

4.6 NAND Bad Blocks

NAND devices can develop bad blocks over time, as well as contain bad blocks when shipped
from the manufacture. Bad blocks are defined as having two or more bit errors within the block.
Single bit errors need to be corrected with software using an ECC algorithm. Most NAND blocks
can be erased and rewritten on the order of 100,000 cycles before potentially going bad. NAND
manufacturers state that the device integrity decays only with erase/program cycles. However,
some third-party studies indicate that data integrity may decay with a large number of read cycles
as well. LogicLoader and YAFFS assume data integrity does not decay with reads. YAFFS
assumes writes may lose integrity over time, so NAND writes are all verified and two or more bit
errors will result in YAFFS marking the block bad.

Unlike NAND flash, NOR flash devices do not have bad blocks.

4.7 NAND Programming

NAND devices are programmed by sending commands to the device. Similar to NOR devices,
programming NAND consists of an erase phase that fills the entire block with 1s and a program
phase that writes 0s to the device. Since NAND is a block device, a flash file system is needed to
manage where data is read from and written to in order to avoid bad blocks on the device.

4.7.1 Skip Bad Block Method

A common algorithm used to program flash devices in production is the “skip bad block method.”
This is a flash file system in its simplest form. As the name implies, data is written contiguously on
the device from low numbered blocks to higher numbered blocks, while skipping any bad blocks
(as marked by the manufacturer). This algorithm works well for programming a NAND device
once, but is not capable of removing and rewriting portions of the written image.

4.7.2 YAFFS Overview

The YAFFS file system has been optimized for NAND use. YAFFS is able to:

■ Identify and avoid bad blocks using an ECC algorithm.
■ Use load leveling, where erasing and writing is averaged out among all the blocks of

the device, and no one block is erased and written repeatedly.
■ Manage metadata, such as directories and links.

YAFFS comes in two flavors: YAFFS1 and YAFFS2. YAFFS1 is the first incarnation of the
YAFFS file system and only supports small page NAND flash devices. YAFFS2 is an improved
version of YAFFS that supports both small page and large page NAND flash devices. The
LogicLoader shell environment makes no distinction between the two flavors and refers to
YAFFS1 or YAFFS2 as “YAFFS.” For the remainder of this document, any reference to “YAFFS”
is applicable to both YAFFS1 and YAFFS2.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 9

More information regarding how YAFFS operates in LogicLoader can be found in the “YAFFS”
Section of this document.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 10

5 Block Devices

Within LogicLoader, a “block device” is any device that only contains pages and sectors that can
be read from or written to (this includes devices that require a block erase before a write).
Examples of block devices are: ATA, NOR flash, and NAND flash. The LogicLoader shell
supports all block devices with the same command set. More detailed information for each
command can be found in the LogicLoader Command Description Manual.

5.1 Using Block Reference

In the losh command set, there are two different methods to directly reference a block on a
device. Some commands require a “B” to be placed in front of the block number. For example:

losh> erase/dev/nand0 B9 B500

In this example, omitting the “B” would indicate flat memory addressing. Use of flat memory
addressing is discouraged and should be replaced with block-aligned memory addressing.

Other commands require the block address to be written without a “B” in front of the block
number. For example:

losh> part-add /dev/nand0 a 1 1024

This command creates a partition “a” in the NAND device. The partition starts at block 1 and is
1024 blocks long. (Partitions are discussed in detail in Section 10 of this document.)

Because the specific command dictates the proper method to reference a block, it is important to
understand the requirements of that specific command. The ‘help’ feature may be useful in
determining which method should be used.

5.2 burn

The ‘burn’ command works with any block device. It burns the loaded image to the device from a
given block offset. For example:

losh> burn /dev/flash0 5

This command will burn the loaded image to flash starting at block 5.

For burning to a NAND device with the skip bad algorithm, use the ‘dd’ command as described
below.

5.3 dd

The ‘dd’ command copies blocks from a source device to a destination device. The command can
use the skip bad block algorithm and it can be turned on with a flag. Use of the ‘dd’ command is
not limited to block devices; it can be used with whatever device you want. However, the device
used with the command does determine how to specify block size. For NOR flash, the ‘dd’
command requires data to be aligned to the width of the device; but for ATA or NAND flash the
command requires you to specify the exact read/write page size. For ATA, the page size is 512;
for NAND flash, the page size is 512, 1024, 2048, or 4096 (518, 1056, 2112, or 4224 when
including spare area). The ‘info mem’ command can be used to determine the correct page size
for your NAND device, where the page is denoted by the more general term “chunk”.

The ‘dd’ command can also be used to provide an image that is file system independent to
program multiple NAND flash devices in manufacturing. Please contact Logic for more
information on how to use the ‘dd’ command to create an image suitable for a manufacturing
environment.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 11

For example:

dd if:/load of:/dev/nand0 count:16 ibs:512 obs:512 os:16 skip_bad:1

This example command will copy the contents of “load” into the NAND data area, skip spare area,
and use the skip bad block algorithm. For command argument details, please see the
LogicLoader Command Description Manual.

5.4 erase

The ‘erase’ command can be used with any device. However, extra caution must be taken when
erasing NAND and NOR blocks so as not to erase a YAFFS partition or any LogicLoader files. An
attempt to erase these files or partitions will require confirmation before the erase command
continues; this will prevent mistakenly erasing files required by the system to boot. NAND blocks
with bad block markers will not be erased. For example:

erase /dev/nand0 B10 B502

This command will erase 502 blocks of the device starting at block 10.

There is an optional argument “force” that can be used with the ‘erase’ command. The force
argument will force the ‘erase’ command to erase all blocks in the specified address range even if
they have been marked bad. Without the “force” argument, the ‘erase’ command will skip bad
blocks in an effort to preserve bad block information. Extreme caution must be used when using
the “force” argument. If a block has been marked bad by the NAND manufacturer, and the block
is erased with the “force” argument, there is no way to ever recover the bad block information. For
example:

erase /dev/nand0 B10 B502 force

Note: The legacy syntax erase <offset> <length> <device> is only supported for
compatibility reasons.

5.5 info

The ‘info’ command can be used to return specific information about the NAND and NOR
devices, as well as information about any YAFFS boot partitions. This information is returned by
using the ‘info mem’ and ‘info YAFFS’ arguments. The ‘info mem’ command includes geometry
data for NAND and NOR flash devices. The geometry information includes:

■ Base address (unique to NOR devices)
■ Number of blocks
■ Bytes per block
■ Is chunk device (if ‘is_chunk_device’ equals 0, then the following information is not

relevant and, therefore, is not printed)
■ Number of chunks
■ Chunk size
■ Bad block list
■ Bytes per chunk
■ Bytes per spare

5.6 update

The ‘update’ command is used to load and install an update image; it also includes support for
updating LogicLoader in the YAFFS partition. When update files are sent to the SOM using the
‘update’ command, LogicLoader will identify the update as LogicLoader, and then program the
NAND part as needed.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 12

6 Program Loading

Using LogicLoader to download any application, operating system, or update to a device requires
an understanding of the interaction between the ‘load’, ‘burn’, ‘jump’, and ‘exec’ commands. The
purpose of this section is to describe each individual command and explain the interaction
between these commands.

6.1 Understanding the ‘load’ Command

The purpose of the ‘load’ command is to transfer a binary image to a device. The image must be
in one of the following supported formats: ELF, SREC, RAW, or BIN. The ‘load’ command uses
information inherent to the supported formats (or as entered as part of the command for RAW
format) to determine where the downloaded image should be stored in the device’s memory. The
‘load’ command stores the destination address of the downloaded image for later use by the
‘burn’ command, and stores the program start address for later use by the ‘jump’ or ‘exec’
commands. For RAW format, ‘load’ will store the destination address as the program start
address. The image must be destined to reside in either flash memory, system RAM, or on-chip
SRAM.

The ‘load’ command also creates a file in the root of the file system called “/load”. This file can be
used by any other file system commands; a common use of the /load file is to copy the loaded
image into a YAFFS partition.

If an image is destined for system RAM or on-chip SRAM, the ‘load’ command stores the image
directly to its run-time location. Refer to Figure 6.1 for a graphic representation of this process.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 13

Host PC

System RAM
external to the SoC

LogicLoader code,
variable, and stack
space

Open RAM

end of LogicLoader

When using the ‘load’ command to transfer an application destined for RAM, LogicLoader
arranges the sections of the image directly in system memory. LogicLoader uses the
application's file format record information to determine where the sections should be placed.
Sections are placed in the memory location the file records specify. If the destination address
overlaps LogicLoader reserved memory (code, variable or stack space), LogicLoader will
abort the load.

Figure 6.1: Downloading to RAM

If a downloaded application is destined for flash memory, the ‘load’ command transfers the file
into a temporary RAM buffer on the device. The transferred image may be programmed into flash
using the ‘burn’ command after the transfer is complete. Refer to Figure 6.2 for a graphic
representation of this process.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 14

Host PC

LogicLoader

Config. Block

Open

Flash Memory System RAM
external to SoC

LogicLoader code,
variable, and stack

space

Open RAM

When using the ‘load’ command to transfer an application destined for flash memory,
LogicLoader uses available system RAM as a buffer where the downloaded image is
temporarily stored. The end result of this command is a copy of the downloaded image
being placed in RAM.

Flash Memory System RAM
external to SoC

LogicLoader code,
variable, and stack

space

The downloaded
image has been

temporarily
stored in RAM.

The ‘burn’ command is used to complete the transfer of the image to flash memory.
This command analyzes the downloaded application and determines where in flash
memory the image is to be saved. If the application will overlap flash block zero or a
valid configuration block, the user is notified and confirmation is required before
continuing. Otherwise, the ‘burn’ command erases the relevant blocks of flash and
programs the downloaded application into the flash array.

end of
LogicLoader

end of LogicLoader

LogicLoader

Downloaded
image's final
destination

Config. Block

Figure 6.2: Downloading to Flash

6.1.1 Using TFTP as a Source

A file located on a TFTP server can be used as the source for the following commands: ‘load’,
‘cat’, ‘hd’, ‘md5sum’, and ‘cp’.

The general form for a TFTP file is “/tftp/<server>:<filename>:[port]” where <server> is the IP
address of the server, <filename> is the name of the file on the TFTP server (including
subdirectory identifiers), and [port] is the optional port number the TFTP server is listening to. If
nothing is specified for the port, it is assumed the TFTP server is using the standard port 69.

For example, to load the ELF file “image.elf” from a TFTP server accessible at IP address
192.168.3.6 that is listening on the standard port, the following command would be used:

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 15

losh> load elf /tftp/192.168.3.6:data-file

Another example would be to load the Platform Builder file “NK.bin” from the TFTP server at IP
address 10.1.240.10 listening on port 3001:

losh> load bin /tftp/10.1.240.10:NK.bin:3001

6.2 Understanding the ‘burn’ Command

The ‘burn’ command should only be used following the successful download of a binary image
destined for flash. If the ‘load’ command is used to download a flash image, the image is
temporarily stored in a reserved section of system RAM. The ‘burn’ command is responsible for
actually erasing the necessary blocks and programming the downloaded image into flash at the
destination address. Refer to Figure 6.2 for more information.

6.3 Understanding the ‘jump’ and ‘exec’ Commands

LogicLoader provides two different ways to transfer execution to your application. The ‘jump’
command is more useful for launching and debugging an application that will be relying on
LogicLoader or an operating system to setup the run-time environment. The ‘exec’ command is
more useful for launching an application, such as an operating system that will take over total
control of the hardware and the environment. The differences between the ‘jump’ and ‘exec’
command are that only ‘exec’ can pass a command line argument to the program being executed
and that ‘exec’ disables interrupts, the cache, and the MMU (if present).

6.3.1 The ‘jump’ Command

The ‘jump’ command is an assembly-level jump to the starting instruction of a program. If ‘jump’ is
executed without a parameter, LogicLoader will jump to the program start address of the last
program loaded to system RAM (if any). If an address is passed in, the ‘jump’ command will jump
to the specified address. After a ‘jump’ command is performed, LogicLoader continues to execute
in the background. LogicLoader does not set up a run-time environment for a program, rather the
program inherits LogicLoader’s current environment. It is the software engineer’s responsibility to
ensure that the hardware is setup in the desired manner.

This example may be used when writing a function that LogicLoader will ‘jump’ to:

int my_jump_function(void);

6.3.2 The ‘exec’ Command

The ‘exec’ command is an assembly-level jump to the starting instruction of a program that will
pass in three arguments. If ‘exec’ is executed without a parameter, LogicLoader will jump to the
program start address of the last program loaded to system RAM (if any) and pass in a pointer to
an empty string. If both an address and command line are specified, the ‘exec’ command will
jump to the specified address and pass a pointer to the command line provided. The ‘exec’
command will disable interrupts, the cache, and the MMU (if present) prior to executing the jump.

The ‘exec’ command passes the command line argument via a pointer to memory that has been
allocated from LogicLoader’s heap. Any application or OS code must preserve the command line,
or finish using the command line arguments, before reclaiming LogicLoader’s memory space for
its own use. Because the ‘exec’ command shuts off the MMU, the image must have a virtual
address that maps directly to its physical address since the entry address that ‘exec’ jumps to will
always be a physical address.

This example may be used when writing a function that LogicLoader will ‘exec’ to:

int my_exec_function(unsigned int arg1, unsigned int arg2, char *cmd_string);

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 16

The first two arguments, arg1 and arg2, have different values depending on the flags given to
'exec'. The third argument will be a pointer to the command line, as described above.

To boot an ARM Linux kernel, use the ‘-t’ argument with the ‘exec’ command. This causes arg1 to
get zero, arg2 is then the architecture ID, and arg3 is a pointer to an ATAG structure that
contains, among other things, a pointer to the cmd_string.

6.3.3 Command Example Using ‘load’ and ‘burn’ with ‘jump’ or ‘exec’

An application program that is written for the Zoom Development Kit can be linked to reside in
flash or ram.

First, let’s assume that we have built an application for flash. To properly store this program in
flash, issue the ‘load’ command followed by the ‘burn’ command. Make note of the program start
address (for example: 0x400d0100) so that you can jump to the program after a reset. Once the
image has been burned to flash, you may enter the ‘jump’ or ‘exec’ command specifying
0x400d0100 as the argument at anytime but you can take a shortcut if you have not reset the
board since the ‘load’ command will store the program start address. A valid sequence would be
as follows:

1. losh> load elf
This transfers the image to the device.

2. losh> burn
This programs the image into flash at the destination address stored by the ‘load’ command.

3. losh> jump or exec
This will work because the ‘load’ command saved the program's flash start address. Both the
burn destination address and the program start address will be valid until the next reset or the
next use of the ‘load’ command.

After a reset the program may be launched at any time using the ‘jump’ or ‘exec’ commands with
a specific destination address:

losh> jump 0x400d0100

or

losh> exec 0x400d0100 –

Next, let’s assume that we have built an application for RAM. To properly load and execute an
application out of RAM, issue the ‘load’ command followed by the ‘jump’ or ‘exec’ command. A
valid sequence would be as follows:

1. losh> load elf
This transfers the image to the device.

2. losh> jump or exec
This will work because the ‘load’ command stored the program start address. The program
start address will be valid for this program until the next reset, or the next use of the ‘load’
command.

Keep in mind that the option of specifying the program start address, as shown in the flash
example, is also available.

6.4 Understanding the ‘update’ Command

Logic deploys software or firmware updates in the form of update files (.upd extension). To deploy
an update file, use the ‘update’ command. If a filename/path parameter is not passed to the
'update' command, the system will assume that stdin is being used to send the update file to the
system. When the update command is activated, after the system has received the .upd file, it
automatically launches the file and performs the actions required.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 17

Update files are comprised of self-extracting applications that, once activated by the update
command, run and perform whatever function the application was coded to carry out. This allows
a single “update” command to perform a variety of different actions from a self-contained file with
minimal user interaction.

The procedure to update LogicLoader with the ‘update’ command differs from the ‘load/burn’
procedure in this way: only one command implements the entire update process without any user
interaction or confirmation.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 18

7 Scripting

7.1 Scripting Overview

Scripts can be used to automate any commands or command sequences entered on the
command line. Scripts are comprised of a simple text file with a listing of commands that the user
wishes to automatically execute in sequence.

7.1.1 Scripting Rules

Basic scripting rules are as follows:

■ Enter commands into the script file with the same syntax used on the losh command
line;

■ Separate commands with a semi-colon or a new line;
■ End the script with a ‘\n’ (this tells the parser to stop parsing the file and instructs the

command interpreter to start executing the script);
■ Use the command ‘exit’ to end the script (this tells the command interpreter to stop

executing the script).

7.2 Launching Scripts

The process of launching a script manually, or post-boot time, uses the ‘source’ command. For
example: the command source /cf_card/myscript.txt will execute the script stored in the
file "myscript.txt" on a mounted CompactFlash card. For more information on the ‘source’
command, please refer to the LogicLoader Command Description Manual document.

The process of auto-launching scripts on startup is referred to as “boot-time scripting.” Boot-time
scripts are the primary mechanism used for automatically launching an OS or application when
deploying a product to the field. Their capability is the same as other scripts, with the difference
being their ability to be automatically run at startup. You can think of a boot-time script fulfilling
the same role as an “autoexec.bat” file commonly found on desktop operating systems. Boot-time
script usage is described more thoroughly below.

A third way to launch a script is to “send” it to the system while LogicLoader is waiting at the losh
prompt. If the script file is sent over the terminal emulator connection to the losh shell, the script
will be entered on the command line as if typed in by the user. If the script being sent
incorporates a carriage return at the end of the script, the command line will launch the script
when it receives the carriage return. This type of script launching is primarily used during
development when the developer wishes to send a number of development commands to
LogicLoader in sequence. For example: a command sequence initializes the Ethernet interface,
downloads a Windows CE OS image, and then launches the OS image with a specific command
line.

7.3 Persistent Script Storage

In order for a script to persist across power cycles, the script must be stored in a local, non-
volatile memory device on the system. There are a number of different persistent storage
locations that can be used to store a script. The primary storage mechanisms supported by
LogicLoader are the serial EEPROM, the resident flash array (dev/config or YAFFS), and the
CompactFlash interface. Because different SOMs may not have one or more of these interfaces
available in hardware, please refer to the individual SOM’s LogicLoader User’s Manual
Addendum document for specific persistent storage interface support.

7.3.1 Persisting Scripts with the Echo Command

The 'echo' command can be used to store a script in the serial EEPROM or /dev/config. To
include a new line in the first argument to 'echo', it is necessary to enclose the whole argument in

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 19

double-quotes. Remember to end the script by inserting ‘\n’ before the end quotes to instruct the
parser to stop parsing the file. Since scripts stored in the serial EEPROM or /dev/config are not
stored as actual files, it is important that any previous information in the serial EEPROM or
/dev/config is not interpreted as part of the script. Check the contents of the serial EEPROM or
/dev/config with ‘cat’ or ‘hd’ to verify that the contents are as expected. If not, the ‘erase’
command should be used to erase any previous information before the ‘echo’ command is
executed.

7.3.2 Serial EEPROM Scripts

The system’s serial EEPROM is one persistent storage area that supports the storage and
execution of scripts. The serial EEPROM is the primary boot-time script storage location. Boot-
time scripts stored to the serial EEPROM are typically short and may redirect to a secondary
script on an interface capable of larger storage capacity.

To store a script to the serial EEPROM interface (/dev/serial_eeprom), use the ‘echo’ command.
An example of using the ‘echo’ command to store information to the serial EEPROM is shown
below:

echo "LOLOmount fatfs /cf; source /cf/B.BAT; exit;\n" /dev/serial_eeprom

7.3.3 Configuration Block Scripts

The system’s configuration block is another persistent storage area that supports the storage and
execution of scripts. The configuration block is located in system flash memory and is the
secondary boot-time script storage location on systems with serial EEPROM.

Store a script to the configuration block interface (/dev/config) by using the ‘echo’ command or
the ‘config S’ command. Here is an example of using the ‘echo’ command to store a script to the
configuration block:

echo "LOLOmount fatfs /cf; source /cf/B.BAT; exit;\n" /dev/config

Note: The configuration block must be initialized before using it for scripting commands. For more
information on how to create and use the configuration block, please see Section 9 of this
document.

7.4 Settings that Affect Scripts

The 'set' command can be used to modify several internal variables affecting script execution.
These function similarly to the Unix shell scripting analog, where a '-' causes the flags that follow
to be set, and a '+' causes them to be unset. It is highly recommended during development to set
the '-w' flag to receive warnings about common scripting errors.

The flags available are:

■ e Exit script execution immediately when commands fail
■ n Read commands, but do not execute; ignored by interactive shells
■ q Do not print LogicLoader error messages
■ u Exit on expansion of unset variables
■ v Echo input lines as they are read
■ w Print warnings for possible errors
■ c Allow prompt for user confirmation
■ x Echo all user commands before executing them

7.5 Using Boot-time Scripting

It is possible to execute a script automatically at startup. This is useful for making the device jump
into an operating system or other program when powered-on without requiring manual command-

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 20

line input. This functionality can be described as being equivalent to the system automatically
calling the ‘source’ command on one of the boot-capable devices.

7.5.1 Boot-time Script Guidelines

All of the commands available in LogicLoader are also available to boot-time scripts. As in normal
scripts, a semi-colon must be used to separate commands and the exit command must be used
to terminate a boot-time script.

In order for a script to be boot-capable, the script must be stored in a boot-capable location and
must contain the necessary “magic” string prefix. A boot-time script may reside either in the on-
board serial EEPROM or in the flash-based configuration block. The order of boot-time execution
is first the EEPROM, then the configuration block. In order to differentiate between auto-booting
scripts and non auto-booting, LogicLoader checks the first four bytes of the boot-capable devices
to see if they contain a "magic" string indicating that the following script should run automatically.

7.5.2 Boot Script Magic Strings

The "magic" string for LogicLoader is "LOLO" for silent execution or “VOLO” for verbose script
execution. If the string “LOLO” prefixes the boot script, the script’s commands and terminal output
will be completely silent. By using “LOLO” as the prefix, it is possible to fully boot the system
without ever sending any information out the debug serial port. If “VOLO” is used as the boot
script prefix, the boot script commands, return codes, and other “normal” information is displayed
via the serial port as if the script was running post-boot time.

7.5.3 Exiting a Boot Script

A common need is to abort the execution of a boot script in order to exit into the command line for
additional debugging, development, or simply to change the boot script. The primary way to
accomplish this is by holding the ‘q’ key down in a terminal emulator program attached to the
device’s debug serial port.

The system does pause for one/half of a second to read from debug serial port to determine if an
abort request is being made. Some of Logic’s SOM products implement an external mode line
that allows LogicLoader to ignore the assertion of the ‘q’ key – thereby skipping the one/half
second wait time and decreasing the overall boot time of the system when a boot script is
desired. For more information on the hardware line that provides this functionality, check the
LogicLoader User's Manual Addendum for your hardware

7.5.4 Understanding the Echo Command

The 'echo' command can be used to store a script in the serial EEPROM or /dev/config. The
‘echo’ command only writes the number of bytes contained in the string. If the string to be written
is shorter than the previous contents, the result of the echo will not be what is intended. Use the
‘cat’ or ‘hd’ command to verify the contents of the serial EEPROM or /dev/config before using the
‘echo’ command.

7.5.5 Boot-time Script Example

The following example creates a simple LogicLoader boot script that first mounts the
CompactFlash card and then runs a second script “B.BAT” on the CompactFlash card that
automates software.

losh>echo "LOLOmount fatfs /cf; source /cf/B.BAT; exit;\n" /dev/serial_eeprom

or

losh>echo "LOLOmount fatfs /cf; source /cf/B.BAT; exit;\n" /dev/config

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 21

7.6 Conditional Scripting and Variables
7.6.1 Variables

LogicLoader’s shell supports the concept of shell variables. The syntax and usage of these
variables are patterned after the BASH shell.

7.6.1.1 Variable Names

A variable name may be any sequence of letters, numbers, or the underscore token.

7.6.1.2 Variable Assignment

A variable is created and assigned a value by using the ‘=’ operator. For example:

losh> foo = 1

creates a new variable named “foo” and assigns it the value of “1”. Once a variable has been
created, it may be assigned a new value at any time by using the ‘=’ operator again. The right-
hand side of an assignment statement is not limited to a simple number; it can be a complex
expression involving other variables.

7.6.1.3 Internal Representation

Variables are internally represented as strings. For example:

losh> foo = 1

internally points the variable “foo” at a sequence of characters equivalent to: 0x31 0x00. Because
variables are treated as strings, commands may be aliased as variables. For example:

losh> e = echo
losh> msg = “Hello World”
losh> $e $msg
Hello World

Notice the quotes used to ignore white space. If the created variable will be assigned to more
than one token, the tokens must be included in double-quotation marks.

7.6.1.4 De-referencing a Variable

To dereference a variable, that is, to access a variable’s assigned value, use the ‘$’ operator. For
example:

losh> foo = “Hello World”
losh> echo $foo
Hello World

The ‘$’ operator causes the shell to substitute the variable with the string value assigned to it. In
some cases, a variable’s assigned value will be converted into a numeric value. This occurs when
the shell is evaluating a conditional expression. This is described in more detail below.

If a variable is referenced that does not have a previous value, its value is assumed to be zero
and a warning message is printed.

Note: Enclosing a sequence of tokens within double-quotes binds them together into a single
token. For example:

losh> e = “echo Hello World”
losh> $e
echo Hello World: command not found

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 22

will not work because the parser only evaluates the string once. Thus, instead of being split up
into three distinct tokens, the double-quotes cause the tokens to be bound and treated as one.

7.6.1.5 Built-in Variables

The shell contains two built-in variables, ‘?’ and ‘@’.

The ‘?’ variable is assigned to the return value of the last command executed. By convention, all
shell commands return zero to indicate that it completed successfully and a non-zero error code
to indicate a failure. To view a command’s return value, use the ‘echo’ command and the value of
the ‘?’ variable. For example:

losh> mount fatfs /cf # Mount a FAT file system.
losh> echo $? # Display the value returned from the mount command.

The ‘@’ variable is an auxiliary variable that is set by some commands. For instance, the ‘echo’
command sets this value to the number of characters that it wrote. Therefore:

losh> echo “Hello”
losh> echo $@
0x5

The number “5” is printed because the string “Hello” contains five characters.

Please reference the LogicLoader Command Description Manual for specific command
descriptions in order to learn which commands set the ‘@’ variable, and if so, the usage of these
commands.

7.6.1.6 Conditional Scripting

LogicLoader’s shell supports an ‘if-else-endif’ programming construct as well as a ‘while’
construct. The syntax for an if-statement and an if-else statement is shown below:

if (expression)
 action
endif

if (expression)
 action-1
else
 action-2
endif

Parentheses are not required around the expression, but they are encouraged to improve
readability of the script. Similarly, tabs and new lines are not needed. The various elements of the
construct may be separated by the ‘;’ operator if so desired. For example:

losh> if expression echo “pass”; else echo “fail”; endif
pass

or

losh> if expression echo “pass”
 else echo “fail”;
 endif

The syntax for a ‘while’ statement is shown below:

while (expression)

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 23

 action
done

The expression is evaluated first. If the return is non-zero, then action is taken and control comes
back to the expression evaluation. This is repeated until the expression evaluates to zero.

Note that ‘if’ and ‘while’ statements can be nested. The following example calculates the greatest
common divisor of the numbers stored in the variables ‘a’ and ‘b’, leaving the result in ‘a’:

losh> while ($a .ne $b) {
 if ($a .gt $b) {
 a = $a - $b
 } else {
 b = $b - $a
 }
 done

7.6.1.7 Expressions

An expression is defined as a number or a combination of a logical operator and a number or
numbers. If a variable has been defined and is being de-referenced in an expression, its value is
converted to a number. An expression evaluates to true if the result is non-zero and false if the
result evaluates to zero. Therefore, the simplest expressions would be:

if (1) # evaluates to true.
if (0) # evaluates to false.

7.6.1.8 Using Shell Variables

losh> foo=1
losh> bar=0x0
if ($foo) # evaluates to true.
if ($bar) # evaluates to false.

The other operators supported by the shell are listed below in order of decreasing precedence.

 ‘-‘ ‘!’ ‘~’ unary minus, logical not, arithmetic not
 ‘*’ ‘/’ ‘%’ multiplication, division, modulus
 ‘+’ ‘-‘ addition, subtraction
 ‘<<’ ‘>>’ left shift, right shift
 ‘.lt’ ‘.le’ ‘.gt’ ‘.ge’ less than, less than or equal, greater than, greater than or equal
 ‘.eq’ ‘.ne’ equality, inequality
 ‘<’ ‘>’ less than, greater than
 ‘==’ ‘!=’ equality, inequality
 ‘$((‘ ‘))’ immediate evaluation open, immediate evaluation close
 ‘^’ bitwise exclusive or
 ‘|’ bitwise or
 ‘&’ bitwise and
 ‘&&’ logical and
 ‘||’ logical or

Note that the operators ‘==’, ‘!=’, ‘>’, ‘<’ apply to either strings or integers, but the evaluation is
done as string comparisons. The operators ‘.eq’, ‘.ne’, ‘.lt’, ‘.le’, ‘.gt’, ‘.ge’ apply to either
strings or integers, but each side of the expression must evaluate to numbers.

Immediate expression evaluation:

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 24

The immediate evaluation construct ‘$((‘ … ‘))’ is used when a command needs an immediate
value In this case the expression contained in ‘$((‘ … ‘)) is immediately evaluated and returned as
a number. For example, the ‘x’ command can not take an expression as its operand:

losh> x /x 0x80200000 + 0x10 4
error: x: wrong number of arguments

Using the immediate evaluation construct ‘$((‘ … ‘))’ gives:

losh> x /x $((0x80200000 + 0x10)) 4
0x80200010 04001000 eb000000 fe000001 40ea0003 ……………@

The following are all valid expressions that can be used as the right-hand side of an assignment,
as an argument to a command (if enclosed in an immediate evaluation construct), or as the
conditional expression in an ‘if’ or ‘while’ construct:

1 & 0 # evaluates to zero
1 | 0 # evaluates to one
0x01 ^ 0x02 # evaluates to 0x3
1 >= 2 # evaluates to zero
0 .ge 1 # evaluates to zero
1 + 3 * 5 ^ 7 # evaluates to 23 (reduces to 16 ^ 7)

As mentioned above, the shell exports two built-in variables. These are ‘?’ and ‘@’. The variable
‘?’ holds the return value of the last command executed. Therefore, constructs like the one below
can prove to be very useful:

mount fatfs /cf
if ($?)
 # Save current return values because ‘echo’ will overwrite them
 s_q = $?
 s_a = $@
 echo “Error, mount failed error codes: ”
 echo $s_q
 echo $s_a
else
 echo “Mounted FAT file system at point ‘/cf’”
endif

Note: In the case of an error, the values of the ‘?’ and ‘@’ variables are saved. This is because
the first call to the ‘echo’ command will overwrite the value of those variables.

7.6.1.9 Escaping the variable character

If the ‘echo’ command is used to store a variable reference in a script, the ‘\’ operator must be
used before that variable in order to defer evaluation of that variable until echoed. For example:

echo “if ($a == 2) source bar;\n” /dev/config

needs to be written as

echo “if (\$a == 2) source bar;\n” /dev/config

in order to prevent losh from evaluating the variable ‘a’ in the string before the echo call is used.
This method applies to any string which must include a literal ‘$’ character.

7.6.1.10 Comments

In order to make it easy to self-document scripts, the shell recognizes and ignores comments. A
comment begins with the character ‘#’ and extends to the end of the current line.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 25

7.6.1.11 Numbers

The shell recognizes the following number formats:

■ decimal
□ contains the characters 0-9
□ does not start with a zero

■ octal
□ contains the characters 0-7
□ starts with a zero

■ hexadecimal
□ contains the characters; 0-9, a-f, or A-F
□ starts with the sequence ‘0x’ or ‘0X’

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 26

8 Video Interface

8.1 Video Interface Overview

LogicLoader includes the following video commands to configure the video controller:

■ video-clear - clears the default video screen (sets the frame buffer to a monolithic
color)

■ video-close - turns off and un-initializes the default video device
■ video-fb - sets or displays the video frame buffer address
■ video-init - connects and initializes default video device settings, but does not enable

the controller
■ video-off - turns off an initialized display
■ video-on - turns on an initialized display
■ video-open - connects and initializes default video device settings and enables the

display controller (equivalent of video-init and video-on)

8.2 Using the Video Interface after Initialization

Once the display has been initialized with either the 'video-open' or the video-init' commands, any
of the drawing commands can be used. The 'video-fb' command allows the user to change the
frame buffer address.

After executing the 'video-fb' command to change the frame buffer address, all drawing
commands will use the new frame buffer address instead of the default. The 'video-init' command
can be used to connect and initialize the video controller without enabling the video display. Then
use the 'bitmap' command to draw to different areas in memory prior to using the 'video-on'
command to turn on the display. A typical command sequence might look like the following:

losh> video-init 7 16
video-init display: width: 640 height: 480 bpp: 16 disp: 7
losh> bitmap TEST1.BMP 0xc0400000
losh> bitmap TEST2.BMP 0xc0600000
losh> video-fb 0xc0400000
losh> video-on
.....other command sequences
losh> video-fb 0xc0600000

.....other command sequences
losh> video-off

If using the configuration block, up to eight uniquely named custom screen settings can be saved.
The stored settings include the frame buffer address so that the frame buffer will be initialized to a
user specified address upon executing the 'video-open' or 'video-init' command. The current
frame buffer address can be ascertained by issuing the 'video-fb' command.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 27

9 Configuration Block

9.1 Configuration Block Overview

Logic has added an optional configuration block. The purpose of the configuration block is to
allow our customers the ability to store large scripts, change the baud rate of the debug serial
port, store default settings for the Ethernet, and save custom LCD controller settings. The script
area accommodates 16kB of script storage space, and the peripheral settings allow for up to
eight different settings each to be saved for the video, Ethernet, and serial. Custom settings can
be downloaded and saved, or pre-programmed at the factory.

The configuration block is optional for most SOMs. Normal operation, with the default settings, is
available to customers who do not wish to use the configuration block.

The configuration block is located on the boot device. On NOR flash devices, the configuration
block is located just after LogicLoader. On NAND flash boot devices, the configuration block is
located in a file called ‘lboot.cfg’ in the boot partition. For SD/MMC boot devices, the configuration
block is located on the SD/MMC card, in the root directory, and is named ‘lboot.cfg’.

9.1.1 Initializing

The configuration block must be initialized on systems that have never implemented a
configuration block. If, for some reason, the system’s configuration block needs to be cleared, this
initialization step will also provide for that.

Enter 'config CREATE' at the losh prompt to initialize (or re-initialize) the configuration block. The
configuration block will be located in the 64K of flash immediately following the LogicLoader flash
storage location.

9.1.2 Scripting

The default mode of the configuration block is scripting. Once the configuration block has been
initialized, users can ‘cat’ and ‘source’ /dev/config in order to view or execute their script. The
‘echo’ command may be used to create the script, or larger scripts can be downloaded and saved
using the ‘config’ command with the ‘S’ option. The scripts in the configuration block can be boot
scripts or ordinary scripts. For more information on scripting, please refer to Section 7.

9.1.3 Video

A customer may save up to eight custom LCD screen settings, including the frame buffer location,
by using the ‘config’ command with the ‘V’ option. In order to store a custom setting, set up the
controller as desired and then enter ‘config V screen_name X Y’ to store it (where X and Y are
dimensions of the screen—e.g., 640 and 480). Once this configuration step is implemented, the
system can use the command sequence ‘video-open screen_name depth” to use the new
configuration.

9.1.4 Serial with the Configuration Block

A customer can change the baud rate of the debug port with the ‘B’ option. The setting will be
stored under the debug serial port’s UART index, and will automatically be used after the next
reset. Only valid settings will be allowed.

9.1.5 Ethernet

A customer may save a default Ethernet setting that consists of a MAC address, and IP address,
a subnet mask, and a gateway.

To accomplish this, set up the controller using the ‘ifmac’ and the ‘ifconfig’ commands, and then
use the ‘config’ command ‘E’ option with an index (e.g., ‘config E 0’) to save the settings. The

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 28

index used must correspond to the hardware name index used in the ifconfig command (e.g.,
sm0 – where 0 is the valid index).

Use the default setting by typing ‘ifconfig sm0 /dev/config’ (where sm0 indicates index 0) to re-
load the values stored in the configuration block. In general, the MAC address is stored in the
config block for viewing purposes only, and the actual MAC address used is accessed directly by
the Ethernet chip out of its dedicated serial EEPROM. On SOMs without a serial_eeprom, the
config block is required if the customer wishes to use the Ethernet feature from within
LogicLoader.

The configuration block allows storage for up to eight Ethernet interface configurations, but the
config E command is only able to store information for SOM hardware that is supported by
LogicLoader.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 29

10 Partitions

10.1 Partitions Overview

Theoretically, partitions can be created on every block device. However, the current
implementation of LogicLoader only allows users to create partitions on NOR and NAND devices.
Partitions on other devices, such as ATA, CompactFlash, and SD cards, can be used, but new
partitions cannot be created on those devices. There can be up to four partitions on a device;
however, extended partition tables are not supported.

Inodes are created for every partition at boot time. For example:

losh> ls /dev

will return the following:

losh> ls dev
 S : sdmmc0d 0
 S : sdmmc0c 0
 S : sdmmc0b 0
 S : sdmmc0a 0
 S : sdmmc0 0
 S : ata0d 0
 S : ata0c 0
 S : ata0b 0
 S : ata0a 0
 S : ata0 0
 S : nand0d 0
 S : nand0c 0
 S : nand0b 0
 S : nand0a 0
 S : nand0 0
 S : flash0d 0
 S : flash0c 0
 S : flash0b 0
 S : flash0a 0
 S : flash0 2097152
 S : null 0
 S : uart0 0
 S : config 0

Within this example, nand0a is only an empty inode at this time and cannot be accessed (unless
previous partition tables have been created on the NAND device). For example:

losh> hd /dev/nand0a 512

will return the following error message:

Partition does not exist, type 0xff
error: hd: failed to open (/dev/nand0a)

The most important thing to know about partition handling is that there is a RAM-based partition
table for every device (referred to as RAM-partition table in this document). At boot, LogicLoader
tries to fill this partition with data from the device. If it does not find a partition table on the device,
then it will be empty. This means that it will be filled with 0s or 1s, depending on the type of
device (the partition is filled with 1s for NOR and NAND flash devices; the partition is filled with 0s
for CompactFlash and SD cards).

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 30

Returning to the example above, the nand0a RAM-partition table is filled with 1s. The partition
driver reads the corresponding entry from the RAM-partition table and finds that its type is 0xff, or
empty. This is why the error message states the partition does not exist.

So for every partition inode, there is a corresponding partition entry in the RAM-partition table.

10.2 Partition Creation in the RAM-Partition Table

Partitions can be created with the ‘part-add’ command. For example:

losh> part-add /dev/nand0 b 1 2048

will create a partition entry in the nand0 RAM-partition table. Note that the second (nand0b)
partition of the device will be filled due to specifying b in the argument; this occurs because every
device can have up to four partitions, which are labeled from a to d. The partition will be added
beginning in block 1 and will have a length of 2048 blocks.

For example:

info part /dev/nand0

will output the table below. This command prints the RAM-partition table for the device given as a
parameter. Note that it is not possible to use a parameter such as /dev/nand0a because this
would instruct the command to access the RAM-partition table for the nand0a partition, but
partitions within partitions are not supported.

 ptype pname pstart plength
a: ff a 0xffffffff 0xffffffff
b: 6c b 0x00000001 0x00000800
c: ff c 0xffffffff 0xffffffff
d: ff d 0xffffffff 0xffffffff

Note that the “ptype” output for the nand0b is 0x6c, this verifies that the second entry is filled.
However, this has no further significance for the user; it is only used to indicate what partitions
have been created with the ‘part-add’ command.

Now that the partition has been created, it can be accessed. Returning to the same example in
the previous section, executing the following will now succeed:

losh> hd /dev/nand0b 512

You can create up to four partitions on a device; these partitions cannot overlap.

10.3 Partition Removal from RAM-Partition Table

Partitions can be removed with the ‘part-rem’ command. For example:

losh> part-rem /dev/nand0 b

will remove the second partition entry from the RAM-partition table. Removing this partition
means that the contents will be overwritten with 0s.

For example:

info part /dev/nand0

will output the following table:

 ptype pname pstart plength
a: ff a 0xffffffff 0xffffffff

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 31

b: 0 b 0x00000000 0x00000000
c: ff c 0xffffffff 0xffffffff
d: ff d 0xffffffff 0xffffffff

This table shows that the second partition entry has been removed (it is all 0s). Attempting to
access this device will return an error message that the partition does not exist.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 32

11 File Systems

11.1 File System Types

Two file system types are supported in LogicLoader: fat and YAFFS. YAFFS can only be
mounted on NOR and NAND flash devices, while fat file systems (fatfs) can only be mounted on
ATA devices (e.g., CompactFlash cards) and SD cards.

11.2 Mount Command

The general syntax of the ‘mount’ command is:

Mount <filesystem type> <device> <mount point> <flags>

File systems can be mounted on partitions or a device. Wear leveling file systems such as
YAFFS can achieve greater performance mounting the entire device. FATFS can be mounted on
a partition without loss of performance.

Whenever a partition is added (using ‘part-add’, or ‘mount’ on a device) that region of memory is
marked as “protected”. Protected areas in LogicLoader are areas of memory that are designated
as in use. Whenever erasing a protected area, a warning will be presented on the shell to confirm
the action. To display protected areas of memory, see the LogicLoader Command Description
Manual entry for ‘info prot’.

NOTE: LogicLoader will attempt to warn the user when performing actions that may result in loss
of data or unstable operation; however, LogicLoader will not restrict the user from performing
such actions.

Specific examples of the ‘mount’ command will be presented in the sections below.

11.3 Mounting fatfs

An example of mounting a fat file system on an ATA device is:

losh> mount fatfs dev/ata0a /cf

This command will create a fat file system on the first partition of the ATA device.

If you would like to create a fat file system on an SD card:

losh> mount fatfs dev/sdmmc0a /sd

This command will create a fat file system on the first partition of the SD card.

In the examples above, the fat file system will be read only. If you would like to create a read/write
file system you have to add a ‘–rw’ flag at the end of the command line. For example:

losh> mount fatfs dev/ata0a /cf -rw

will create a read/write fat file system on the first partition of the ATA device.

11.3.1 Legacy Syntax

The old syntax of the ‘mount’ command is still supported, but it has many limitations. Because of
these limitations, it is strongly recommended that you use the new syntax whenever possible. For
example, the following command will create a fat file system on the first partition of the ATA
device, just like the example above:

losh> mount fatfs /cf

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 33

However, the old syntax does not allow you to mount on any other partition other than the first.
Also, the old syntax is only available for ATA devices; it cannot be used to mount file systems on
SD cards.

11.4 Mounting YAFFS
11.4.1 Mounting YAFFS on NAND

An example of mounting a YAFFS file system on a NAND flash is:

losh> mount yaffs dev/nand0a /yaffs1

This command will create a YAFFS file system on the first partition of the NAND device. Before
executing the ‘mount’ command, the partition should be created first. So the entire sequence
would look like this:

losh> erase /dev/nand0 B0 B2048
losh> part-add dev/nand0 a 1 2048
losh> mount yaffs dev/nand0a /yaffs1

The ‘mount’ command supports a special case where it can both create a partition and mount the
partition within a single command. To do this, specify the device rather than the partition; the
mount command will perform a part-add on the entire device and then mount it. If partitions
already exist on the device, the ‘mount’ command will create a new partition from the last partition
to the end of the device. For example:

losh> erase /dev/nand0 B0 B2048
losh> mount yaffs dev/nand0 /yaffs1

11.4.2 Mounting YAFFS on NOR

In order to mount YAFFS on a NOR flash device, an emulation layer must be created first. NOR
flash devices do not have chunks, so a layer is required that emulates the NAND storage type
making the NOR device look like a NAND device. The emulation layer is created using the
‘mount’ command.

losh> mount emu dev/flash0a /femu

Just like with NAND, mounting YAFFS on NOR requires a partition to be created first. So the
entire sequence of commands to mount YAFFS on a NOR device looks like:

losh> part-add dev/flash0 a 5 20
losh> erase /dev/flash0 B0 B20
losh> mount emu dev/flash0a /femu1
losh> mount yaffs /femu1 /yaffs1

11.4.3 Unmounting YAFFS

LogicLoader supports the ‘unmount’ command; however, the unmount command in LogicLoader
serves no useful purpose except in the case of unmounting YAFFS. Unmounting YAFFS creates
a checkpoint which is written to the file system. A YAFFS checkpoint can greatly decrease the
time it takes for future mounts.

YAFFS is a journaling file system, so when mounting YAFFS it must look through the file system
history to identify which files are current. On large NAND devices, this may take a long time. To
overcome this, the file system state information can be written to the file system. On subsequent
mounts, rather than looking through all the files histories, the file system state information is
loaded via the checkpoint. It should be noted that whenever the file system is updated in any way
the checkpoint is invalidated.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 34

11.4.4 Legacy Syntax

The legacy ‘add-yaffs’ command is only supported for compatibility reasons and should not be
actively used. The legacy command is emulated, so when you type add-yaffs boot nand 1
2048 it creates a partition, registers the name “boot” for the actual partition. This means when
you type mount yaffs /boot it gets the partition name based on ‘/boot’ and performs a mount
just like mount yaffs /dev/nand0b /boot.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 35

12 YAFFS (Yet Another Flash File System)

Please be aware that the YAFFS user interface has changed in LogicLoader version 2.4. The
legacy user interface is still supported for backwards compatibility, but the new interface—as
described in this section—should be used whenever possible.

12.1 YAFFS Overview

The acronym YAFFS stands for the phrase "Yet Another Flash Filing System.” YAFFS was
developed by a company named Aleph One Limited and incorporated by Logic Product
Development into the LogicLoader software program.

Logic selected YAFFS to fill its file system requirements due to the flexible nature of the program,
its licensing scheme, and the fact that it is available for Linux, Windows CE, and other operating
systems. YAFFS also allows LogicLoader and an RTOS to view and modify the same partition. It
also makes it easier for customers to work with embedded flash technology and perform in-field
updates. As an example, in Linux it is customary to have the Linux kernel reside in /boot/vmlinux,
so using the commands below allows LogicLoader to mount, load, and boot the Linux kernel from
the partition that is accessible from the Linux kernel.

losh> part-add /dev/nand0 a 9 500
losh> mount yaffs /dev/nand0a /nand-root
losh> load elf /nand-root/boot/vmlinux
losh> exec

Note: The partition entries for YAFFS partitions are not persistent—they must be restored on
each boot. However, the partitions and data remain persistent.

12.2 Working with YAFFS in LogicLoader
12.2.1 Developing a Partition Scheme

In LogicLoader, YAFFS is mounted on partitions; there can be up to four partitions at a time on a
NAND or NOR device.

Partitions are created with the ‘part-add’ command, as in the examples below. (Partition handling
is discussed in detail in Section 10 of this document.) Customers should design a partitioning
scheme which suits their individual needs; however, for the purpose of providing examples within
this document, the following partitioning scheme will be assumed for NOR flash:

■ A partition named “boot” which contains a bitmap and operating system image and
spans the address space below:
□ * start: block 5
□ * length: 5 blocks (320kB) [remember that block sizes vary depending upon

device; use the ‘info mem’ command to display proper block size]
■ A partition named “data” which contains customer specific data.

□ * start: block 10
□ * length: 16 blocks (1 MB)

These two partitions are created with the following commands:

losh> part-add /dev/flash0 a 5 5
losh> part-add /dev/flash0 b 10 16

For the purpose of providing examples within this document, the following partitioning scheme will
be assumed for NAND flash:

■ A partition named “boot” which contains a bitmap and operating system image and
spans the block range below:

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 36

□ * start: block 10
□ * length: 256 blocks (8 MB, assuming 16kB block size)

■ A partition named “data” which contains customer specific data.
□ * start: block 266 (abuts boot partition)
□ * length: 128 blocks (4 MB, assuming 16kB block size)

These two partitions are created with the following commands:

losh> part-add /dev/nand0 a 10 256
losh> part-add /dev/nand0 b 266 128

12.2.2 Formatting YAFFS Partitions

All file systems need to be formatted before they can be mounted. Because YAFFS was designed
from the ground up to work with embedded flash technologies, it understands an 'erased' flash
device to be both formatted and empty. To prepare your partition for mounting, use LogicLoader's
'erase' command to erase the area of flash where the partition is to be located.

Using the example partition scheme in the “Developing a Partition Scheme” section above, the
partitions could be prepared for initial use by erasing the regions of the flash device spanned by
them.

For a NOR example

losh> erase /dev/flash0 B5 B5
losh> erase /dev/flash0 B10 B16

For a NAND example:

losh> erase /dev/nand0 B10 B256
losh> erase /dev/nand0 B266 B128

Warning: Erasing flash blocks that will be used for YAFFS partitions will erase everything in
those areas of flash. It is not required to format the partition every time the device is rebooted.
The partition should only be formatted when an entirely new YAFFS partition is created, or when
the data on a stored partition needs to be completely erased. For NAND-based devices, the first
few blocks of NAND (the actual number of blocks is dependent on the NAND device) are used to
hold the ‘/lboot’ partition which is where LogicLoader resides. Modifying data in this partition can
cause the board to fail to boot.

12.2.3 Mounting the Partition

To mount a partition, the 'mount' command is used—as was discussed in Section 11.4. This
command takes the following arguments:

■ <filesystem type> the type of file system being mounted (‘yaffs’ here)
■ <device> the device on which the YAFFS partition is mounted
■ <mountpoint> the name of the YAFFS partition

For example, to mount YAFFS on a NAND:

losh> mount yaffs /dev/nand0a /boot
losh> mount yaffs /dev/nand0b /data

Note: As previously discussed, you cannot mount YAFFS directly on NOR flash devices. First
you have to mount an emulation layer on top of the NOR flash device, then you can mount
YAFFS on the emulation layer.

For example:

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 37

losh> mount emu /dev/flash0a /femu1
losh> mount emu /dev/flash0b /femu2

losh> mount yaffs /femu1 /boot
losh> mount yaffs /femu2 /data

12.2.4 Accessing YAFFS Partitions in an OS

A key advantage of the read/write YAFFS file system capability at the LogicLoader level is the
ability to share data stored in the file system with an OS environment. If an OS environment (e.g.,
Linux, Windows CE, VxWorks) implements YAFFS as an OS-accessible file-system, any files
available to LogicLoader are also available to the OS, and vice-versa.

This contributes to significant benefits in the areas of system software upgrades (including OS
upgrades) splash screen changes, script modifications, and other boot-time data that may need
to be updated.

12.3 Summary

To use the YAFFS file system within LogicLoader, follow these steps:

1. Format the partitions by erasing the associated flash blocks.
2. Decide on a partitioning scheme and create partitions.
3. Mount the partitions using the 'mount' command (first mount an emulation layer for NOR

flash devices).

Steps 2 and 3 must be repeated every time the system is booted. If the YAFFS partitions are
frequently accessed, consider implementing steps 2 and 3 via a boot script. Step 1 only needs to
be performed when creating a brand new partition or when the contents of an existing partition
need to be completely erased.

Note: A partition is persistent. Re-adding a partition at boot-time restores access to previously
saved data. Flash blocks must be erased to permanently remove a partition; otherwise, it can be
recovered across boots.

Keep in mind the following when working with YAFFS and LogicLoader:

■ Ensure partitions do not overlap each other, LogicLoader, or the configuration block.
■ Ensure that a partition is erased before it is mounted for the first time.

Note: The legacy YAFFS mounting scheme is still supported for backwards compatibility, but its
use is discouraged.

LogicLoader v2.4 User Manual

PN 1009736C Logic PD, Inc. All Rights Reserved. 38

Appendix: LwIP License Agreement

LogicLoader uses the open source LwIP stack for networking support. The LwIP license requires
the inclusion of the following license to satisfy Condition #2 below:

Copyright (c) 2001, 2002 Swedish Institute of Computer Science. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

This file is part of the lwIP TCP/IP stack.

Author: Adam Dunkels <adam@sics.se>

http://www.bigwhistlestudios.com/webmail/compose.php?to=adam@sics.se�

	Revision History
	Table of Contents
	Table of Figures and Tables
	1 Introduction to LogicLoader™
	1.1 Overview
	1.2 Product Features
	1.3 Acronyms
	1.4 Technical Specifications
	1.5 LogicLoader Command Description Manual
	1.6 LogicLoader Addendums
	1.7 LogicLoader Labs

	2 LogicLoader
	2.1 LogicLoader Overview
	2.2 LogicLoader Basics
	2.3 Using LogicLoader for Debugging
	2.4 Manufacturing Advantages with LogicLoader

	3 The LogicLoader Shell (losh)
	3.1 Losh Overview
	3.2 Losh Basics
	3.2.1 Using Losh
	3.2.1.1 Understanding the ‘ls’ Command

	4 Flash Devices and LogicLoader
	4.1 NOR Addressing
	4.2 Booting from NOR
	4.3 Booting from NAND
	4.4 Booting from SD/MMC
	4.5 NAND Addressing
	4.6 NAND Bad Blocks
	4.7 NAND Programming
	4.7.1 Skip Bad Block Method
	4.7.2 YAFFS Overview

	5 Block Devices
	5.1 Using Block Reference
	5.2 burn
	5.3 dd
	5.4 erase
	5.5 info
	5.6 update

	6 Program Loading
	6.1 Understanding the ‘load’ Command
	6.1.1 Using TFTP as a Source

	6.2 Understanding the ‘burn’ Command
	6.3 Understanding the ‘jump’ and ‘exec’ Commands
	6.3.1 The ‘jump’ Command
	6.3.2 The ‘exec’ Command
	6.3.3 Command Example Using ‘load’ and ‘burn’ with ‘jump’ or ‘exec’

	6.4 Understanding the ‘update’ Command

	7 Scripting
	7.1 Scripting Overview
	7.1.1 Scripting Rules

	7.2 Launching Scripts
	7.3 Persistent Script Storage
	7.3.1 Persisting Scripts with the Echo Command
	7.3.2 Serial EEPROM Scripts
	7.3.3 Configuration Block Scripts

	7.4 Settings that Affect Scripts
	7.5 Using Boot-time Scripting
	7.5.1 Boot-time Script Guidelines
	7.5.2 Boot Script Magic Strings
	7.5.3 Exiting a Boot Script
	7.5.4 Understanding the Echo Command
	7.5.5 Boot-time Script Example

	7.6 Conditional Scripting and Variables
	7.6.1 Variables
	7.6.1.1 Variable Names
	7.6.1.2 Variable Assignment
	7.6.1.3 Internal Representation
	7.6.1.4 De-referencing a Variable
	7.6.1.5 Built-in Variables
	7.6.1.6 Conditional Scripting
	7.6.1.7 Expressions
	7.6.1.8 Using Shell Variables
	7.6.1.9 Escaping the variable character
	7.6.1.10 Comments
	7.6.1.11 Numbers

	8 Video Interface
	8.1 Video Interface Overview
	8.2 Using the Video Interface after Initialization

	9 Configuration Block
	9.1 Configuration Block Overview
	9.1.1 Initializing
	9.1.2 Scripting
	9.1.3 Video
	9.1.4 Serial with the Configuration Block
	9.1.5 Ethernet

	10 Partitions
	10.1 Partitions Overview
	10.2 Partition Creation in the RAM-Partition Table
	10.3 Partition Removal from RAM-Partition Table

	11 File Systems
	11.1 File System Types
	11.2 Mount Command
	11.3 Mounting fatfs
	11.3.1 Legacy Syntax

	11.4 Mounting YAFFS
	11.4.1 Mounting YAFFS on NAND
	11.4.2 Mounting YAFFS on NOR
	11.4.3 Unmounting YAFFS
	11.4.4 Legacy Syntax

	12 YAFFS (Yet Another Flash File System)
	12.1 YAFFS Overview
	12.2 Working with YAFFS in LogicLoader
	12.2.1 Developing a Partition Scheme
	12.2.2 Formatting YAFFS Partitions
	12.2.3 Mounting the Partition
	12.2.4 Accessing YAFFS Partitions in an OS

	12.3 Summary

	Appendix: LwIP License Agreement

