
™

Building Linux from Scratch for the OMAP35x
Application Note 412

Logic // Products
Published: February 2010

Abstract
This Application Note will walk readers through building a functional Linux system targeting the
Texas Instruments Zoom™ OMAP35x Development Kit. The document focuses on building the
entire system from scratch using only patches to freely downloadable, open source software.

This document contains valuable proprietary and confidential information and the attached file contains source code, ideas, and
techniques that are owned by Logic Product Development Company (collectively “Logic’s Proprietary Information”). Logic’s
Proprietary Information may not be used by or disclosed to any third party except under written license from Logic Product
Development Company.

Logic Product Development Company makes no representation or warranties of any nature or kind regarding Logic’s Proprietary
Information or any products offered by Logic Product Development Company. Logic’s Proprietary Information is disclosed herein
pursuant and subject to the terms and conditions of a duly executed license or agreement to purchase or lease equipment. The only
warranties made by Logic Product Development Company, if any, with respect to any products described in this document are set
forth in such license or agreement. Logic Product Development Company shall have no liability of any kind, express or implied,
arising out of the use of the Information in this document, including direct, indirect, special or consequential damages.

Logic Product Development Company may have patents, patent applications, trademarks, copyrights, trade secrets, or other
intellectual property rights pertaining to Logic’s Proprietary Information and products described in this document (collectively “Logic’s
Intellectual Property”). Except as expressly provided in any written license or agreement from Logic Product Development
Company, this document and the information contained therein does not create any license to Logic’s Intellectual Property.

The Information contained herein is subject to change without notice. Revisions may be issued regarding changes and/or additions.

© Copyright 2010, Logic Product Development Company. All Rights Reserved.

PN 1013562A Logic Product Development Company, All Rights Reserved i

AN 412: Building Linux from Scratch for OMAP35x

Revision History

REV EDITOR DESCRIPTION APPROVAL DATE

A JCA
Initial release;
General formatting and grammatical changes JCA 02/05/10

PN 1013562A Logic Product Development Company, All Rights Reserved ii

AN 412: Building Linux from Scratch for OMAP35x

Table of Contents

1 Introduction ... 1
1.1 Audience .. 1
1.2 Scope and Background Information ... 2
1.3 Hardware Used .. 2
1.4 Software Used .. 2

2 Mise en Place .. 3
2.1 Project Environment Variables ... 3
2.2 Project Directory Structure ... 3

3 Download the Project's Packages .. 4
3.1 Package Overview ... 4
3.2 Download Logic Patches ... 4
3.3 Download Linux Kernel .. 4

3.3.1 Verifying Downloaded Software .. 4
3.4 Download U-Boot ... 5
3.5 Download BusyBox .. 5
3.6 Download CodeSourcery Tools; Sourcery G++ Lite Edition .. 6
3.7 Download Pure GNU Tools .. 6

4 Install the CodeSourcery Tools ... 7
4.1 Dealing with the DASH Shell ... 7
4.2 Install Sourcery G++ Lite.. 7
4.3 Adjust PATH Environment Variable ... 8

5 Build Toolchain from Scratch ... 9
5.1 Extract and Patch the GNU Tools .. 9

5.1.1 Extract the GNU Tools ... 9
5.1.2 Extract the GNU Patches .. 9
5.1.3 Patch Binutils ... 9
5.1.4 Patch GCC ... 10

5.2 Create Temporary Build Directories ... 10
5.3 Configure and Build Binutils ... 10
5.4 Configure and Build GCC Bootstrap Compiler .. 11
5.5 Configure and Install the Kernel Headers .. 12
5.6 Understanding GCC Multilib .. 12
5.7 Install the Default GLIBC Headers ... 15
5.8 Install the VFP Multilib Headers ... 15
5.9 Configure and Build GCC-2 ... 16
5.10 Build and Install the Default Cross-GLIBC Library ... 17
5.11 Build and Install the VFP Multilib Cross-GLIBC Library ... 18
5.12 Configure and Build Final GCC .. 19
5.13 Copy GCC Libraries ... 19

6 Extract Logic Patches .. 21
7 Extract, Patch, and Build U-Boot .. 22

7.1 Extract U-Boot .. 22
7.2 Patch U-Boot .. 22

7.2.1 Apply Logic-Supplied Patches ... 22
7.2.2 Manually Modify a U-Boot File... 22
7.2.3 Rename U-Boot Directory (optional) ... 23

7.3 Configure and Build U-Boot ... 23
7.4 Build and Install the U-Boot mkimage Tool .. 23
7.5 Build mkimage .. 23
7.6 Make the Tool Available ... 24

8 Extract, Patch, and Build Linux ... 25
8.1 Extract Linux Kernel ... 25
8.2 Patch the Linux Kernel ... 25

PN 1013562A Logic Product Development Company, All Rights Reserved iii

AN 412: Building Linux from Scratch for OMAP35x

PN 1013562A Logic Product Development Company, All Rights Reserved iv

8.2.1 Apply Logic-Supplied Patches ... 25
8.2.2 Manually Modify the Linux Kernel File ... 25
8.2.3 Rename Linux Kernel Directory (optional) .. 26

8.3 Configure and Build the Linux Kernel .. 26
9 Extract, Configure, and Build BusyBox ... 28

9.1 Extract BusyBox ... 28
9.2 Configure and Build BusyBox .. 28

10 Create a Root File System ... 30
10.1 Create an Empty Root Filesytem ... 30
10.2 Mount the Root File System ... 30
10.3 Populate the Root File System .. 30

10.3.1 Create Standard Directories .. 31
10.3.2 Create Standard Devices .. 31
10.3.3 Copy BusyBox Binaries to Root File System .. 31
10.3.4 Create a Startup Script .. 31
10.3.5 Fix Ownership and Group Settings ... 32

10.4 Finish the Root File System ... 32
10.4.1 Unmount the file system. ... 32
10.4.2 Compress the Root File System .. 32
10.4.3 Repackage the Root File System .. 32

11 Download and Execute U-Boot and Linux ... 33
11.1 Prepare Development Kit ... 33
11.2 Erase Previous U-Boot Environment ... 33
11.3 Download and Launch U-Boot ... 33
11.4 Create a New U-Boot Environment .. 34

12 References .. 36
12.1 Books ... 36
12.2 Online Resources ... 36

13 Contact Information ... 37
Appendix A: Sample Scripts .. 38

AN 412: Building Linux from Scratch for OMAP35x

1 Introduction
Building an embedded Linux system for real target hardware can be an extremely satisfying, yet
daunting task. As a product solutions company, we at Logic have helped many customers
successfully field devices based on Linux and would sincerely like to discuss how we might help
you with your project. Please feel free to engage with us as you start to investigate fielding an
embedded Linux-based device. We would love to help in any way possible—see Section 13 for
contact information.

Internally, Logic maintains a private Linux tool and software distribution based on LTIB (Linux
Target Image Builder) [http://savannah.nongnu.org/projects/ltib]. Logic makes these tools
available to select customers based on their experience with prior Linux development and
opportunity for engagement with Logic. The rules regarding who is given or denied access to our
internal tools are flexible and the tools themselves are typically offered free of charge. If you
would like to learn more, please contact Logic sales [product.sales@logicpd.com]. The reasoning
behind not simply offering the tools to everyone basically comes down to support risk. Any
product that comes from Logic is backed by a firm commitment of support. Logic prefers to focus
on offering its customers product solutions—so supporting Linux tools creates a definite risk of
distracting our resources from their main mission of providing solutions to our customers.

Logic also maintains an active partnership with Timesys [http://linuxlink.timesys.com/3/Linux/Logic]
to provide mature and professionally supported tools to our customers. Logic works very closely
with Timesys and, as a result, Timesys always has access to the latest source code and patches
for our hardware. Logic's customers have been successful using the Timesys tools and all are quite
satisfied with their experience. Many of Logic's customers are eligible for free demonstrations of
Timesys' tools and we strongly encourage everyone to look closely at the Timesys offerings.

This Application Note describes a third method of building a Linux system for Logic's Zoom
OMAP35x Development Kits; creating one from scratch. Logic offers downloads that contain the
patches to the open-source software that it works with internally. Experienced embedded Linux
developers may prefer to work with the patches and pristine sources using the tools and methods
they are familiar with. We also find that inexperienced developers, often idealistically, also want to
build entire systems from scratch. Though Logic would never suggest trying to launch an actual
product using this method, this Application Note should fully document the steps necessary to get
a basic system in place.

1.1 Audience
This Application Note was written for software engineers with experience pulling together the
software components necessary to build an embedded Linux system. The document should
provide enough information concerning tools, versions, and patches that seasoned Linux
developers can work with Logic's output to accomplish their goals.

It is almost a given that novice developers will also read this Application Note and undertake the
processes described therein. Effort was made to accurately document each step in sufficient
detail that simply repeating the commands listed should achieve the desired result. However,
readers should be cautioned that no attempt has been made to note the myriad of system
administrative details necessary on the desktop-side to properly configure, build, and deploy
software using the methods described below. Friedrich Nietzsche said; "That which does not kill
us makes us stronger." Trying to build an entire Linux system from scratch without sufficient
system administration knowledge definitely shouldn't kill you, but you will feel some pain. The
author can only suggest that when you encounter problems you remember that patience is a
virtue and Google is your friend.

PN 1013562A Logic Product Development Company, All Rights Reserved 1

http://savannah.nongnu.org/projects/ltib
mailto:product.sales@logicpd.com
http://linuxlink.timesys.com/3/Linux/Logic

AN 412: Building Linux from Scratch for OMAP35x

1.2 Scope and Background Information
This Application Note assumes that you have experience administering your own Linux
workstation. At the very least, you should be able to understand when an error is caused by
something missing, or out-of-date, on your development system and how to correct the situation.
If your command-line Fu is weak, plan to spend some time boning up on BASH-scripting and
prepare to read many MAN pages.

1.3 Hardware Used
This Application Note uses the Texas Instruments Zoom™ OMAP35x Development Kit from
Logic. Specifically, the development was verified on:

SOM Model Number: SOMOMAP3530-10-1672IFCR-A
SOM Part Number: 1010194

1.4 Software Used
This Application Note refers to the following revisions of embedded software:

Package Version
Linux Kernel: 2.6.28-rc8
U-Boot Universal Bootloader: 1.1.4
BusyBox: 1.14.1
GNU Compiler Collection (GCC): 4.4.0
GNU Binutils: 2.19.1
GNU C Library (GLIBC): 2.9
OMAP35x Patches from Logic: 1.5
LogicLoader Bootloader/Monitor (LoLo): 2.4.6-OMAP3503 0001

All development was done using Ubuntu 8.10 [http://www.ubuntu.com] - the Intrepid Ibex -
released in October 2008. All of the system's packages were up-to-date at the time of writing.
Several development packages were installed to allow building the various components
(automake, awk, make, texinfo, etc.). Again, the document assumes that readers have enough
UNIX/Linux system administration experience to successfully figure out when a necessary tool is
absent (or out-of-date) and how to install (or upgrade) it as necessary.

PN 1013562A Logic Product Development Company, All Rights Reserved 2

http://www.ubuntu.com/

AN 412: Building Linux from Scratch for OMAP35x

2 Mise en Place
"Mise en place is the primary organizational principle in all cooking. It means first things first or,
literally, 'everything in its place'" (Reinhart 49). As in the kitchen, we will do in the lab. This section
will set the stage by defining some basic environment variables and a directory structure we will
use throughout the rest of our project.

To start, we will create a series of environment variables and directories which will be used
throughout this project. The environment variables are often used as shortcuts to the various
directories and packages we will use.

2.1 Project Environment Variables
Create the project's environment variables.

$ export PRJROOT=$HOME/olfs
$ export ARCHIVE=$PRJROOT/archive
$ export BUILDTOOLS=$PRJROOT/build-tools
$ export KERNEL=$PRJROOT/kernel
$ export PATCHES=$PRJROOT/patches
$ export ROOTFS=$PRJROOT/rootfs
$ export TOOLS=$PRJROOT/tools
$ export UBOOT=$PRJROOT/u-boot

2.2 Project Directory Structure
Create the project's directories.

$ mkdir $PRJROOT
$ mkdir $ARCHIVE
$ mkdir $BUILDTOOLS
$ mkdir $KERNEL
$ mkdir $PATCHES
$ mkdir $ROOTFS
$ mkdir $TOOLS
$ mkdir $UBOOT

At this point, you probably want to go ahead and enter the root of your project tree.

$ cd $PRJROOT
$ ls

archive kernel rootfs u-boot
build-tools patches tools

PN 1013562A Logic Product Development Company, All Rights Reserved 3

AN 412: Building Linux from Scratch for OMAP35x

3 Download the Project's Packages
Now that we have a project directory structure in place, we will download all of the packages we
need.

Logic's suggestion is that you keep everything you download in the $ARCHIVE directory for
future reference. The rest of this tutorial assumes you have stored the packages in this directory.

$ cd $ARCHIVE

3.1 Package Overview
We will be using the following software packages throughout the remainder of this tutorial.

■ Logic-provided Linux and U-Boot Patches - http://support.logicpd.com/auth/

■ linux 2.6.28-rc8 - http://www.kernel.org

■ U-Boot 1.1.4 - http://www.denx.de/wiki/U-Boot

■ BusyBox 1.14.1 - http://www.busybox.net

■ CodeSourcery Sourcery G++ Lite arm-2009q1-203 - http://www.codesourcery.com

■ Binutils 2.19.1 - http://www.gnu.org/

■ GCC 4.4.0- http://gcc.gnu.org/

■ GLIBC 2.9 - http://www.gnu.org

3.2 Download Logic Patches
Logic provides patches for the Linux kernel and U-Boot. To access the patches, please ensure
that you have created an account and registered your development kit on http://www.logicpd.com.
Once you have logged in and gained access to the kit's dedicated downloads page, find the zip
file containing the patches. You should be able to find the patch set by going to
http://support.logicpd.com/auth/downloads/OMAP35x Zoom Development Kit/#linux and
downloading the file denoted by the OMAP35x Linux Demo Image Patch Set link. At the time of
writing, the version of the patch file found at the link above was
1013108_OMAP35x_Patches_v1.5.zip.

Download the Logic patches and save the zip file in the $ARCHIVE directory.

3.3 Download Linux Kernel
The Linux kernel can be downloaded from many different websites. For this tutorial, we will
download a pristine kernel from http://www.kernel.org. Optionally, you may also download the
kernel's signature file and verify that you received a properly signed source code package.

$ wget \
> http://www.kernel.org/pub/linux/kernel/v2.6/testing/v2.6.28/ \
> linux-2.6.28-rc8.tar.bz2

3.3.1 Verifying Downloaded Software

If you would like to verify the digital signature of the software packages you download, you may
do so using GPG. To verify, download the *.sign or *.sig file that corresponds to the source code
package. Use GPG --verify to check the signature against the package. If you have not loaded
the appropriate public key into your keyring, GPG will report an error, but also tell you the
hexadecimal fingerprint of the key used to sign the package. You may then import the reported
key into your local keyring and use GPG to verify the downloaded source code.

PN 1013562A Logic Product Development Company, All Rights Reserved 4

http://support.logicpd.com/auth/
http://www.kernel.org/
http://www.denx.de/wiki/U-Boot
http://www.busybox.net/
http://www.codesourcery.com/
http://www.gnu.org/
http://gcc.gnu.org/
http://www.gnu.org/
http://www.logicpd.com/
http://support.logicpd.com/auth/downloads/OMAP35x%20Zoom%20Development%20Kit/%23linux
http://www.kernel.org/

AN 412: Building Linux from Scratch for OMAP35x

A general and specific example are given below.

$ gpg --verify package.tar.bz2.sig

gpg: Signature made Sun 17 May 2009 08:02:08 PM CDT using DSA key ID WWXXYYZZ
gpg: Can't check signature: public key not found

$ gpg --keyserver wwwkeys.pgp.net --recv-keys 0xWWXXYYZZ

$ wget \
> http://www.kernel.org/pub/linux/kernel/v2.6/testing/v2.6.28/ \
> linux-2.6.28-rc8.tar.bz2.sign

$ gpg --verify linux-2.6.28-rc8.tar.bz2.sign

gpg: Signature made Sun 17 May 2009 08:02:08 PM CDT using DSA key ID 517D0F0E
gpg: Can't check signature: public key not found

$ gpg --keyserver wwwkeys.pgp.net --recv-keys 0x517D0F0E
gpg: requesting key 517D0F0E from hkp server wwwkeys.pgp.net
gpg: key 517D0F0E: public key "Linux Kernel Archives Verification Key"
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: Total number processed: 1
gpg: imported: 1

$ gpg --verify linux-2.6.28-rc8.tar.bz2.sign

gpg: Signature made Wed 10 Dec 2008 06:49:04 PM CST using DSA key ID 517D0F0E
gpg: Good signature from "Linux Kernel Archives Verification Key"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: C75D C40A 11D7 AF88 9981 ED5B C86B A06A 517D 0F0E

3.4 Download U-Boot
Das U-Boot http://www.denx.de/wiki/U-Boot is a bootloader commonly used to load Linux on
embedded devices. We will use it to load a Linux kernel and root file system onto our target
hardware and boot the system.

$ wget ftp://ftp.denx.de/pub/u-boot/u-boot-1.1.4.tar.bz2

3.5 Download BusyBox
BusyBox combines tiny versions of many common UNIX utilities into a
single small executable. It provides replacements for most of the utilities
you usually find in GNU fileutils, shellutils, etc. The utilities in BusyBox
generally have fewer options than their full-featured GNU cousins;
however, the options that are included provide the expected functionality
and behave very much like their GNU counterparts. BusyBox provides a
fairly complete environment for any small or embedded system.

BusyBox has been written with size-optimization and limited resources in
mind. It is also extremely modular so you can easily include or exclude
commands (or features) at compile time. This makes it easy to customize
your embedded systems. To create a working system, just add some
device nodes in /dev, a few configuration files in /etc, and a Linux kernel.

PN 1013562A Logic Product Development Company, All Rights Reserved 5

http://www.denx.de/wiki/U-Boot

AN 412: Building Linux from Scratch for OMAP35x

BusyBox is maintained by Denys Vlasenko, and licensed under the GNU
GENERAL PUBLIC LICENSE version 2.

–www.busybox.net/about.html

$ wget http://www.busybox.net/downloads/busybox-1.14.1.tar.bz2

3.6 Download CodeSourcery Tools; Sourcery G++ Lite Edition
You have a choice of tools to use. If you want to use the pre-built tools from CodeSourcery,
download the files in this section. This tutorial will use the Lite Edition of CodeSourcery's
[http://www.codesourcery.com] excellent cross-compiling tool chain.

$ # Note, use "-O" switch to avoid PHP items finding their
$ # way into the name of the downloaded file.

$
> http://www.codesourcery.com/sgpp/lite/arm/portal/package4573/public/
\

wget -O arm-2009q1-203-arm-none-linux-gnueabi.bin \

> arm-none-linux-gnueabi/arm-2009q1-203-arm-none-linux-gnueabi.bin

$ # Download the user manual while we are at it

$ wget \
> http://www.codesourcery.com/sgpp/lite/arm/portal/doc4337/ \
> getting-started.pdf

3.7 Download Pure GNU Tools
If you plan to build your toolchain from scratch, you will need to download several items to build
your GNU cross-toolchain.

$ wget http://ftp.gnu.org/pub/gnu/binutils/binutils-2.19.1.tar.bz2
$ wget http://ftp.gnu.org/pub/gnu/gcc/gcc-4.4.0/gcc-4.4.0.tar.bz2
$ wget http://ftp.gnu.org/pub/gnu/glibc/glibc-2.9.tar.bz2
$ wget hhttp://ftp.gnu.org/pub/gnu/glibc/glibc-ports-2.9.tar.bz2

If you would like, you may follow the instructions detailed in Section 3.3.1 "Verifying Downloaded
Software" to verify the digital signatures on the GNU tools.

PN 1013562A Logic Product Development Company, All Rights Reserved 6

http://www.busybox.net/about.html
http://www.busybox.net/about.html
http://www.codesourcery.com/

AN 412: Building Linux from Scratch for OMAP35x

4 Install the CodeSourcery Tools
Before you install the CodeSourcery tools, you should read the Getting Started Guide that comes
with them. Chapter 4 of the Sourcery G++ Getting Started Guide discusses installing and
configuring the tools. This tutorial will assume that you have read that guide and are following the
detailed instructions listed therein. This tutorial should only be used as a CliffsNotes version of
the installation instructions.

4.1 Dealing with the DASH Shell
If you are using Ubuntu or Debian, you may need to get the dash shell "out of the way" before
installing these tools.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell,
which is the default /bin/sh for recent releases of the Ubuntu and Debian
GNU/Linux distributions. To install Sourcery G++ Lite on these systems,
you must make /bin/sh a symbolic link to one of the supported shells:
bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash

Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed
Sourcery G++ Lite toolchain.

–CodeSourcery Getting Started Guide; Chapter 4

4.2 Install Sourcery G++ Lite
Again, refer to the CodeSourceryGetting Started Guide for complete details. Steps to install the
tools from the command line are repeated below for your convenience.

$ cd $ARCHIVE
$ /bin/sh ./arm-2009q1-203-arm-none-linux-gnueabi.bin -i console

Preparing to install...
Extracting the JRE from the installer archive...
Unpacking the JRE...
Extracting the installation resources from the installer archive...
Configuring the installer for this system's environment...

Launching installer...

Preparing CONSOLE Mode Installation...

===
Sourcery G++ Lite for ARM GNU/Linux(created with InstallAnywhere

 ...

You should accept the license agreement and the standard installation options; the installer will
do the rest. You can verify that the tools were installed by using the following commands:

$ ls $HOME
... CodeSourcery ...

PN 1013562A Logic Product Development Company, All Rights Reserved 7

AN 412: Building Linux from Scratch for OMAP35x

$ ls $HOME/CodeSourcery
Sourcery_G++_Lite Sourcery_G++_Lite_for_ARM_GNU_Linux

$ ls $HOME/CodeSourcery/Sourcery_G++_Lite/bin
arm-none-linux-gnueabi-addr2line arm-none-linux-gnueabi-gprof
arm-none-linux-gnueabi-ar arm-none-linux-gnueabi-ld
arm-none-linux-gnueabi-as arm-none-linux-gnueabi-nm
arm-none-linux-gnueabi-c++ arm-none-linux-gnueabi-objcopy
arm-none-linux-gnueabi-c++filt arm-none-linux-gnueabi-objdump
arm-none-linux-gnueabi-cpp arm-none-linux-gnueabi-ranlib
arm-none-linux-gnueabi-g++ arm-none-linux-gnueabi-readelf
arm-none-linux-gnueabi-gcc arm-none-linux-gnueabi-size
 ...

4.3 Adjust PATH Environment Variable
You will need to adjust your shell's PATH variable to ensure these newly installed tools can be
found.

$ export PATH=$HOME/CodeSourcery/Sourcery_G++_Lite/bin:$PATH
$ which arm-none-linux-gnueabi-gcc

/home/logic/CodeSourcery/Sourcery_G++_Lite/bin/arm-none-linux-gnueabi-
gcc

$ arm-none-linux-gnueabi-gcc --version

arm-none-linux-gnueabi-gcc (Sourcery G++ Lite 2009q1-203) 4.3.3
Copyright (C) 2008 Free Software Foundation, Inc.
...

NOTE: You may wish to add the above commands to your $HOME/.bashrc file so that PATH is
properly set next time you login.

PN 1013562A Logic Product Development Company, All Rights Reserved 8

AN 412: Building Linux from Scratch for OMAP35x

5 Build Toolchain from Scratch
About once each year the author finds himself trying to build a complete GNU cross-toolchain
from scratch using the methods described below. It is never a pleasant experience. The classic
computer science text Compilers: Principles, Techniques, and Tools by Alfred V. Aho, Ravi Sethi,
and Jeffrey D. Ullman is commonly known as the Dragon Book because at the time of its
publication, designing compilers was one of the most complex undertakings in the field. Certainly
designing compilers has gotten easier for those employed in that trade; however, for those of us
that just want to generate a working cross compiler, the path still feels fraught with danger.

Any successful cross build of GCC from scratch owes a great debt to the many people who have
taken the time to document the arcane bits of knowledge necessary to pull three complex pieces
of software together into a working toolchain. The author's list of creditors includes; Bill Gatliff,
Dan Kegel, Karim Yaghmour, Peter Barada, Kai Ruottu, and Steve Papacharalambous.

Specifically, the sed commands to fix the built linker scripts comes directly from work Steve
Papacharalambous published as part of the LTIB project.

5.1 Extract and Patch the GNU Tools

5.1.1 Extract the GNU Tools

Unpack the source code for the GNU tools into the project's "build-tools" directory. Note that
"glibc-ports" is extracted into the "glibc" directory.

$ cd $ARCHIVE
$ tar -xjf binutils-2.19.1.tar.bz2 -C $BUILDTOOLS
$ tar -xjf gcc-4.4.0.tar.bz2 -C $BUILDTOOLS
$ tar -xjf glibc-2.9.tar.bz2 -C $BUILDTOOLS
$ tar -xjf glibc-ports-2.9.tar.bz2 -C $BUILDTOOLS/glibc-2.9

$ cd $BUILDTOOLS
$ ls

binutils-2.19.1 gcc-4.4.0 glibc-2.9

5.1.2 Extract the GNU Patches

There are a couple of small patch files we need to apply to binutils and GCC so that they may
build for the ARM architecture without warning.

$ cd $ARCHIVE
$ tar -xjf gnu-patches.tar.bz2 -C $PATCHES

$ cd $PATCHES/gnu-patches
$ ls

binutils-2.19.1 gcc-4.4.0

5.1.3 Patch Binutils

Apply the patches, in the designated order, to the U-Boot source code. You MUST be in the root
directory of the binutils source code for the commands below to work. You should be in the same
directory as the "COPYING" and "MAINTAINERS" files.

PN 1013562A Logic Product Development Company, All Rights Reserved 9

AN 412: Building Linux from Scratch for OMAP35x

$ cd $BUILDTOOLS/binutils-2.19.1/
$ for p in $PATCHES/gnu-patches/binutils-2.19.1/*.patch
> do
> echo "Applying patch ${p}"
> patch -p1 < ${p}
> done

5.1.4 Patch GCC

Using the same method as above, apply the patches to the GCC source code.

$ cd $BUILDTOOLS/gcc-4.4.0/
$ for p in $PATCHES/gnu-patches/gcc-4.4.0/*.patch
> do
> echo "Applying patch ${p}"
> patch -p1 < ${p}
> done

5.2 Create Temporary Build Directories
The GNU tools are built in directories separate from their source code. We will make several
temporary directories now.

$ cd $BUILDTOOLS
$ mkdir build-binutils build-gcc{1,2,3} build-glibc
$ ls

binutils-2.19.1 build-gcc1 build-gcc3 gcc-4.4.0
build-binutils build-gcc2 build-glibc glibc-2.9

5.3 Configure and Build Binutils
Binutils is a relatively painless and easy package to build and install.

$ cd $BUILDTOOLS/build-binutils
$../binutils-2.19.1/configure \
> --target=$TARGET \
> --prefix=$PREFIX \
> --with-sysroot=$SYSROOT
$ make all
$ make install
$ ls $PREFIX/bin

arm-none-linux-gnueabi-addr2line arm-none-linux-gnueabi-objcopy
arm-none-linux-gnueabi-ar arm-none-linux-gnueabi-objdump
arm-none-linux-gnueabi-as arm-none-linux-gnueabi-ranlib
 ...

$ arm-none-linux-gnueabi-as --version

PN 1013562A Logic Product Development Company, All Rights Reserved 10

AN 412: Building Linux from Scratch for OMAP35x

GNU assembler (GNU Binutils) 2.19.1
Copyright 2007 Free Software Foundation, Inc.
...

5.4 Configure and Build GCC Bootstrap Compiler
GCC needs to be bootstrapped. You will note that we disable several items in the configuration
command below. To read more on what each of these options does, consult the GCC installation
manual at http://gcc.gnu.org/install. Specifically, review the configuration section
http://gcc.gnu.org/install/configure.html.

Briefly, the disabled options below are removed for the following reasons:

libssp – libssp is "stack smashing protection," we disable it because the library's configuration
script tries to build and run an executable file as a test. However, since we are building a cross-
compiler, any programs it builds will not be able to be executed on our host machine—thus this
will fail.

libgomp – libgomp [http://gcc.gnu.org/onlinedocs/libgomp/index.html] is the GNU implementation
of the OpenMP (API) [http://openmp.org/wp/] for multi-platform shared-memory parallel
programming in C/C++ and Fortran. We disable it here because it requires a threading model and
our bootstrapped compiler lacks this (--disable-threads and --with-newlib).

libmudflap – libmudflap provides runtime bounds checking for the C-language when -fmudflap is
specified on the GCC command line. It needs a C-library to function and we haven't built that yet,
thus it too must be disabled.

$ cd $BUILDTOOLS/build-gcc1
$
> --target=$TARGET \
../gcc-4.4.0/configure \

> --prefix=$PREFIX \
> --without-headers \
> --with-newlib \
> --disable-shared \
> --disable-threads \
> --disable-libssp \
> --disable-libgomp \
> --disable-libmudflap \
> --enable-languages=c

$ make
$ make install
$ ls $PREFIX/bin

... arm-none-linux-gnueabi-gcc ...

$ arm-none-linux-gnueabi-gcc --version

arm-none-linux-gnueabi-gcc (GCC) 4.4.0
Copyright (C) 2009 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.

PN 1013562A Logic Product Development Company, All Rights Reserved 11

http://gcc.gnu.org/install
http://gcc.gnu.org/install/configure.html
http://gcc.gnu.org/onlinedocs/libgomp/index.html
http://openmp.org/wp/

AN 412: Building Linux from Scratch for OMAP35x

5.5 Configure and Install the Kernel Headers
Full versions of GLIBC and GCC need the kernel headers to build. We will configure and install
them now. Jump ahead to Chapter 8. "Extract, Patch, and Build Linux" and follow those
instructions up to building the kernel before proceeding.

$ cd $KERNEL/linux-2.6.28-rc8-omap3530lv-som
$ make ARCH=arm \
> CROSS_COMPILE=$TARGET- \
> INSTALL_HDR_PATH=${SYSROOT}/usr \
> headers_install

$ ls $SYSROOT/usr/include

asm asm-generic drm linux mtd rdma sound video

5.6 Understanding GCC Multilib
MULTILIB_OPTIONS

For some targets, invoking GCC in different ways produces objects that
cannot be linked together. For example, for some targets GCC produces
both big and little endian code. For these targets, you must arrange for
multiple versions of libgcc.a to be compiled, one for each set of
incompatible options. When GCC invokes the linker, it arranges to link in
the right version of libgcc.a, based on the command line options used.

–GCC Internals
[http://gcc.gnu.org/onlinedocs/gcc-4.4.0/gccint/Target-

Fragment.html#Target-Fragment]

In the case of building an ARM GCC Cross-Compiler, there are several different ways that GCC
can generate code. GCC can generate code which adheres to different Application Binary
Interface (ABI) formats, various versions of the ARM and Thumb instruction sets (ARMv2–
ARMv7), code that supports calling between ARM and Thumb instructions (interworked), actual
floating point instructions versus calls to integer-based emulation libraries, and even code
specifically tuned to a particular ARM-based processor. It is important that software compiled
using specific options such as those just mentioned is also linked with libraries compiled in a
compatible manner. To state an obvious example, you can't compile little-endian code for a
"hello, world" application and link it with a big-endian version of "printf."

To find the multilibs that GCC will build by default for a given target compiler, follow the example
below.

Example 5.1: Mulitilibs and GCC Configuration

1. Using any text editor open the file: gcc-4.4.0/gcc/config.gcc

2. Scroll to line #715 and notice the lines:

arm*-*-linux-*eabi)
 tm_file="$tm_file arm/bpabi.h arm/linux-eabi.h"
 tmake_file="$tmake_file arm/t-arm-elf arm/t-bpabi arm/t-linux-eabi"

The "tmake_file" line tells the configuration process to include the three listed files in the final,
auto-generated Makefile.

3. Open gcc-4.4.0/gcc/config/arm/t-arm-elf and scroll to line #16.

PN 1013562A Logic Product Development Company, All Rights Reserved 12

http://gcc.gnu.org/onlinedocs/gcc-4.4.0/gccint/Target-Fragment.html%23Target-Fragment
http://gcc.gnu.org/onlinedocs/gcc-4.4.0/gccint/Target-Fragment.html%23Target-Fragment

AN 412: Building Linux from Scratch for OMAP35x

4. Note the MULTILIB_OPTIONS and MULTILIB_DIRNAMES options. These imply that GCC
will build two multilibs, one for "arm" and another for "thumb."

5. Open gcc-4.4.0/gcc/config/arm/t-linux-eabi and scroll to line #6

6. Note the newer MULTILIB_OPTIONS and MULTILIB_DIRNAMES. These values will
overwrite the previous settings, which tells us that building GCC for an arm-none-linux-
gnueabi target is going to generate a default library and another named "vfp."

Example 5.2: Multilib Output from GCC

If you happen to have a version of GCC around, you can pass it the -print-multi-lib option as so:

$ arm-none-linux-gnueabi-gcc -print-multi-lib

.;
vfp;@mfpu=vfp

The above output tells us that this particular installation of GCC can compile code against two
libraries: the default and one named "vfp" if the -mfpu compiler switch is set to "vfp." Let's look at
this a little closer with a simple program.

Create a sample program named "foo.c":

 foo.c

 #include <stdio.h>
 void main (void)
 {
 int i;
 float f = 0.0;

 for (i = 0; i < 10; ++i)
 {
 printf(" %d : %f\n", i, f);
 f += 0.1;
 }
 }

$ arm-none-linux-gnueabi-gcc -v -S ./foo.c &> test-one
$ arm-none-linux-gnueabi-gcc -v -S -mfpu=vfp ./foo.c &> test-two
$ diff test-one test-two

Note that the line xxxxx/cc1 will contain "-imultilib vfp" in the output of test-two. This means that
GCC recognized that the "-mfpu=vfp" switch calls for the generated code to be linked to a
different library.

Example 5.3: A Final Example

Here is another example to show how GCC options generate different code and link with different
libraries as needed.

 my_square.c

 float my_square(float x)
 {

PN 1013562A Logic Product Development Company, All Rights Reserved 13

AN 412: Building Linux from Scratch for OMAP35x

 return (x * x);
 }

Using the default compilation options, the tools will call libraries to emulate the floating point
operations using integer math.

$ arm-none-linux-gnueabi-gcc -S my_square.c

my_square.s

my_square:
 1: @ args = 0, pretend = 0, frame = 8
 2: @ frame_needed = 1, uses_anonymous_args = 0
 3: stmfd sp!, {fp, lr}
 4: add fp, sp, #4
 5: sub sp, sp, #8
 6: str r0, [fp, #-8] @ float
 7: ldr r0, [fp, #-8] @ float
 8: ldr r1, [fp, #-8] @ float
 9: bl __aeabi_fmul
10: mov r3, r0
11: mov r0, r3
12: sub sp, fp, #4
13: ldmfd sp!, {fp, pc}
14: .size my_square, .-my_square
15: .ident "GCC: (GNU) 4.4.0"
16: .section .note.GNU-stack,"",%progbits

Note how line #9 contains a call to a function named "__aeabi_fmul()" which will actually perform
the floating point multiplication.

Using VFP switches generate actual floating point code.

$ arm-none-linux-gnueabi-gcc -mfpu=vfp -mfloat-abi=softfp -S
square.c

my_square.s

my_square:
 1: @ args = 0, pretend = 0, frame = 8
 2: @ frame_needed = 1, uses_anonymous_args = 0
 3: @ link register save eliminated.
 4: str fp, [sp, #-4]!
 5: add fp, sp, #0
 6: sub sp, sp, #12
 7: str r0, [fp, #-8] @ float
 8: flds s14, [fp, #-8]
 9: flds s15, [fp, #-8]
10: fmuls s15, s14, s15
11: fmrs r3, s15
12: mov r0, r3 @ float
13: add sp, fp, #0
14: ldmfd sp!, {fp}
15: bx lr
16: .size my_square, .-my_square
17: .ident "GCC: (GNU) 4.4.0"
18: .section .note.GNU-stack,"",%progbits

PN 1013562A Logic Product Development Company, All Rights Reserved 14

AN 412: Building Linux from Scratch for OMAP35x

Here, in lines #8–11, we can see that GCC has emitted real floating point instructions which will
execute immediately.

Given the discussion above, you will understand why in the following sections we seem to do
everything with GLIBC twice.

5.7 Install the Default GLIBC Headers
GCC will need versions of GLIBC headers. You will probably want to review the GLIBC
configuration and installation documentation
[http://www.gnu.org/software/libc/manual/html_node/Configuring-and-compiling.html#Configuring-
and-compiling].

$ cd $BUILDTOOLS/build-glibc
$ echo "libc_cv_forced_unwind=yes" > config.cache
$ echo "libc_cv_c_cleanup=yes" >> config.cache

$ BUILD_CC=gcc \
> CC=$TARGET-gcc \
> CXX=$TARGET-g++ \
> AR=$TARGET-ar \
> RANLIB=$TARGET-ranlib \
> ../glibc-2.9/configure \
> --prefix=/usr \
> --with-headers=$SYSROOT/usr/include \
> --build=i686-pc-linux-gnu \
> --host=$TARGET \
> --without-fp \
> --disable-profile \
> --without-gd \
> --without-cvs \
> --cache-file=config.cache \
> --enable-add-ons

$ make install-headers \
> install_root=$SYSROOT \
> install-bootstrap-headers=yes

$ mkdir -p $SYSROOT/usr/include/gnu
$ touch $SYSROOT/usr/include/gnu/stubs.h
$ cp bits/stdio_lim.h $SYSROOT/usr/include/bits/stdio_lim.h

$ mkdir -p $SYSROOT/usr/lib

$ make csu/subdir_lib
$ cp csu/crt1.o csu/crti.o csu/crtn.o $SYSROOT/usr/lib
$ $TARGET-gcc -nostdlib -nostartfiles -shared -x c \
> -o $SYSROOT/usr/lib/libc.so \
> /dev/null

5.8 Install the VFP Multilib Headers
Please refer to the discussion in Example 5.3 regarding multilib if you are not sure why we need
to regenerate the headers.

PN 1013562A Logic Product Development Company, All Rights Reserved 15

http://www.gnu.org/software/libc/manual/html_node/Configuring-and-compiling.html%23Configuring-and-compiling
http://www.gnu.org/software/libc/manual/html_node/Configuring-and-compiling.html%23Configuring-and-compiling

AN 412: Building Linux from Scratch for OMAP35x

$ cd $BUILDTOOLS/build-glibc
$ mkdir -p ${SYSROOT}/vfp

$ # Clean up previous configuration files
$ rm -rf *

$ echo "libc_cv_forced_unwind=yes" > config.cache
$ echo "libc_cv_c_cleanup=yes" >> config.cache

$ BUILD_CC=gcc \
> CC=$TARGET-gcc \
> CXX=$TARGET-g++ \
> AR=$TARGET-ar \
> RANLIB=$TARGET-ranlib \
> ../glibc-2.9/configure \
> --prefix=/usr \
> --with-headers=$SYSROOT/usr/include \
> --build=i686-pc-linux-gnu \
> --host=$TARGET \
> --disable-profile \
> --without-gd \
> --without-cvs \
> --cache-file=config.cache \
> --enable-add-ons

$ make install-headers \
> install_root=$SYSROOT/vfp \
> install-bootstrap-headers=yes

$ mkdir -p $SYSROOT/vfp/usr/include/gnu
$ touch $SYSROOT/vfp/usr/include/gnu/stubs.h
$ cp bits/stdio_lim.h $SYSROOT/vfp/usr/include/bits/stdio_lim.h

$ mkdir -p $SYSROOT/vfp/usr/lib

$ make csu/subdir_lib
$ cp csu/crt1.o csu/crti.o csu/crtn.o $SYSROOT/vfp/usr/lib
$ $TARGET-gcc -nostdlib -nostartfiles -shared -x c \
> -o $SYSROOT/vfp/usr/lib/libc.so \
> /dev/null

5.9 Configure and Build GCC-2
Now that we have kernel and glibc headers in place, we can build a more functional GCC.

$ cd $BUILDTOOLS/build-gcc2
$../gcc-4.4.0/configure \
> --target=$TARGET \
> --prefix=$PREFIX \
> --with-sysroot=${SYSROOT} \
> --disable-libssp \
> --disable-libgomp \
> --disable-libmudflap \
> --enable-shared \
> --enable-threads \
> --enable-languages=c

PN 1013562A Logic Product Development Company, All Rights Reserved 16

AN 412: Building Linux from Scratch for OMAP35x

$ make
$ make install

5.10 Build and Install the Default Cross-GLIBC Library
The second build of GCC is complete enough to do a full build of GLIBC.

$ cd $BUILDTOOLS/build-glibc
$ # Clean up previous builds
$ rm -rf *

$ echo "libc_cv_forced_unwind=yes" > config.cache
$ echo "libc_cv_c_cleanup=yes" >> config.cache

$ BUILD_CC=gcc \
> CFLAGS=' -O -mabi=aapcs-linux -march=armv5te -mtune=cortex-a8 ' \
> CFLAGS=' -mfloat-abi=softfp -msoft-float ' $CFLAGS \
> CC=$TARGET-gcc \
> CXX=$TARGET-g++ \
> AR=$TARGET-ar \
> RANLIB=$TARGET-ranlib \
> ../glibc-2.9/configure \
> --prefix=/usr \
> --with-headers=$SYSROOT/usr/include \
> --build=i686-pc-linux-gnu \
> --host=$TARGET \
> --without-fp \
> --with-abi=aapcs-linux \
> --with-arch=armv5te \
> --disable-profile \
> --without-gd \
> --without-cvs \
> --cache-file=config.cache \
> --enable-add-ons

$ make
$ make install install_root=$SYSROOT

NOTE: We need to fix up some generated linker scripts. The command below
can be confusing if you aren't used to scripting with BASH and using SED. Thus,
I'll briefly explain. Essentially, this "script" searches for 8 files; lib/libc.so,
lib/libpthread.so, lib64/libc.so, lib64/libpthread.so, usr/lib/libc.so,
usr/lib/libpthread.so, usr/lib64/libc.so, and usr/lib64/libpthread.so. If it finds the
files, it modifies each one using sed. The modifications are to remove the
references to the above directories.

It's probably easier to visualize if you write each sed command out individually as
the author has done below. Remember that the first character after the
substitution (s) command is the delimiter. So the first few commands use a
comma as a delimeter rather than the typical "/" character since they are
searching for directories:

sed s,/usr/lib/,,g < ${SYSROOT}/${lib}/${file}_orig >
${SYSROOT}/${lib}/${file}

PN 1013562A Logic Product Development Company, All Rights Reserved 17

AN 412: Building Linux from Scratch for OMAP35x

sed s,/usr/lib64/,,g < ${SYSROOT}/${lib}/${file}_orig >
${SYSROOT}/${lib}/${file}

sed s,/lib/,,g < ${SYSROOT}/${lib}/${file}_orig >
${SYSROOT}/${lib}/${file}

sed s,/lib64/,,g < ${SYSROOT}/${lib}/${file}_orig >
${SYSROOT}/${lib}/${file}

sed /BUG in libc.scripts.output-format.sed/d <
${SYSROOT}/${lib}/${file}_orig >
${SYSROOT}/${lib}/${file}

$ for file in libc.so libpthread.so
> do
> for lib in lib lib64 usr/lib usr/lib64
> do
> if [-f ${SYSROOT}/${lib}/${file}] && [! -h
${SYSROOT}/${lib}/${file}]
> then
> mv ${SYSROOT}/${lib}/${file} ${SYSROOT}/${lib}/${file}_orig
> sed 's,/usr/lib/,,g;s,/usr/lib64/,,g;s,/lib/,,g;s,/lib64/,,g;/BUG in
libc.scripts.output-format.sed/d' < ${SYSROOT}/${lib}/${file}_orig >
${SYSROOT}/${lib}/${file}
> fi
> done
> done

5.11 Build and Install the VFP Multilib Cross-GLIBC Library
Again, review the previous discussion on multilib if you are unsure why this step needs to be
taken.

NOTE: Notice that we specify -mfpu=vfp this time around.

$ cd $BUILDTOOLS/build-glibc
$ # Clean up previous builds
$ rm -rf *

$ echo "libc_cv_forced_unwind=yes" > config.cache
$ echo "libc_cv_c_cleanup=yes" >> config.cache

$ BUILD_CC=gcc \
> CFLAGS=' -O -mabi=aapcs-linux -march=armv5te -mtune=cortex-a8 ' \
> CFLAGS=' -mfloat-abi=softfp -mfpu=vfp ' $CFLAGS \
> CC=$TARGET-gcc \
> CXX=$TARGET-g++ \
> AR=$TARGET-ar \
> RANLIB=$TARGET-ranlib \
> ../glibc-2.9/configure \
> --prefix=/usr \
> --with-headers=$SYSROOT/usr/include \
> --build=i686-pc-linux-gnu \
> --host=$TARGET \
> --with-abi=aapcs-linux \

PN 1013562A Logic Product Development Company, All Rights Reserved 18

AN 412: Building Linux from Scratch for OMAP35x

> --with-arch=armv5te \
> --disable-profile \
> --without-gd \
> --without-cvs \
> --cache-file=config.cache \
> --enable-add-ons

$ make
$ make install install_root=$SYSROOT/vfp

NOTE: See the discussion above regarding fixing up the linker script.

$ for file in libc.so libpthread.so
> do
> for lib in lib lib64 usr/lib usr/lib64
> do
> if [-f ${SYSROOT}/vfp/${lib}/${file}] && [! -h
${SYSROOT}/vfp/${lib}/${file}]
> then
> mv ${SYSROOT}/vfp/${lib}/${file} ${SYSROOT}/vfp/${lib}/${file}_orig
> sed 's,/usr/lib/,,g;s,/usr/lib64/,,g;s,/lib/,,g;s,/lib64/,,g;/BUG in
libc.scripts.output-format.sed/d' < ${SYSROOT}/vfp/${lib}/${file}_orig
> ${SYSROOT}/vfp/${lib}/${file}
> fi
> done
> done

5.12 Configure and Build Final GCC
Now that GLIBC has been built, we can build a fully-operational GCC—including support for C++.

$ cd $BUILDTOOLS/build-gcc3
$../gcc-4.4.0/configure \
> --target=$TARGET \
> --prefix=$PREFIX \
> --with-sysroot=${SYSROOT} \
> --disable-libssp \
> --enable-shared \
> --enable-threads \
> --enable-languages=c,c++ \
> --enable-__cxa_atexit

$ make
$ make install

5.13 Copy GCC Libraries
We need to copy some GCC libraries into our SYSROOT.

$ cd ${PREFIX}/${TARGET}/lib
$ for file in `ls`

PN 1013562A Logic Product Development Company, All Rights Reserved 19

AN 412: Building Linux from Scratch for OMAP35x

> do
> if [! -d ${file}]
> then
> cp -d ${file} ${SYSROOT}/lib
> fi
> done

$ cd ${PREFIX}/${TARGET}/lib/vfp
$
> do
for file in `ls`

> if [! -d ${file}]
> then
> cp -d ${file} ${SYSROOT}/vfp/lib
> fi
> done

PN 1013562A Logic Product Development Company, All Rights Reserved 20

AN 412: Building Linux from Scratch for OMAP35x

6 Extract Logic Patches
We need to extract the Logic patches from the archive we downloaded from
http://support.logicpd.com/auth/ so we can apply them to U-Boot and the Linux kernel in
upcoming steps.

$ cd $ARCHIVE
$ unzip 1013108_OMAP35x_Patches_v1.5.zip -d $PATCHES
$ cd $PATCHES
$ ls

1013108_OMAP35x_Patches_v1.5.0

$ ls 1013108_OMAP35x_Patches_v1.5.0

linux-2.6.28-rc8 u-boot-1.1.4

PN 1013562A Logic Product Development Company, All Rights Reserved 21

http://support.logicpd.com/auth/

AN 412: Building Linux from Scratch for OMAP35x

7 Extract, Patch, and Build U-Boot

7.1 Extract U-Boot
Unpack the U-Boot source code that was previously downloaded from http://www.denx.de/wiki/U-
Boot

$ cd $ARCHIVE
$ tar -xjf u-boot-1.1.4.tar.bz2 -C $UBOOT
$ cd $UBOOT
$ ls

u-boot-1.1.4

$ cd u-boot-1.1.4
$ ls

arm_config.mk drivers lib_microblaze
board dtt lib_mips
CHANGELOG examples lib_nios
common fs lib_nios2
config.mk i386_config.mk lib_ppc
 ...

7.2 Patch U-Boot

7.2.1 Apply Logic-Supplied Patches

Apply the Logic-supplied patches, in the designated order, to the U-Boot source code. You MUST
be in the root directory of the U-Boot source code for the commands below to work. You should
be in the same directory as the "COPYING" and "MAINTAINERS" files.

$ for p in $PATCHES/1013108_OMAP35x_Patches_v1.5.0/u-boot-1.1.4/*.patch
> do
> echo "Applying patch ${p}"
> patch -p1 < ${p}
> done

7.2.2 Manually Modify a U-Boot File

At the time of this writing, you also need to manually make a minor patch to U-Boot.

Patching lib_arm/board.c
The following change is necessary to build U-Boot.

1. Using any text editor, open lib_arm/board.c

2. Scroll to approximately line 82

3. Insert the following function declaration

 #if defined(CONFIG_3430LV_SOM)
 void init_vaux1_voltage(void);
 #endif

PN 1013562A Logic Product Development Company, All Rights Reserved 22

http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot

AN 412: Building Linux from Scratch for OMAP35x

7.2.3 Rename U-Boot Directory (optional)

You may wish to change the name of your U-Boot directory to denote the fact that it has been
patched and is no longer a "stock" U-Boot source tree.

$ cd ..
$ mv u-boot-1.1.4 u-boot-1.1.4-omap3430-lv-som
$ cd u-boot-1.1.4-omap3430-lv-som

7.3 Configure and Build U-Boot
The steps below outline how to configure and build U-Boot for Logic's OMAP35x System on
Module (SOM). You are encouraged to read the U-Boot documentation for a complete
understanding of the process.

$ make distclean
$ make \
> ARCH=arm \
> CROSS_COMPILE=arm-none-linux-gnueabi- \
> omap3530lv_som_config

$
> ARCH=arm \
make \

> CROSS_COMPILE=arm-none-linux-gnueabi- \
> all

$ ls

... u-boot ...

$ file u-boot

u-boot: ELF 32-bit LSB executable, ARM, version 1, statically linked

$ # Copy the u-boot file to /tftpboot for later download
$ cp u-boot /tftpboot

7.4 Build and Install the U-Boot mkimage Tool
U-Boot expects the Linux kernel to be packaged in a certain format, commonly named "uImage."
The source code for the tool which repackages the kernel is included in the U-Boot package.
Here we will build the tool and copy it to the directory where our other compilation tools live. That
way, the kernel's build-system can find and use it.

7.5 Build mkimage
Build the tool.

NOTE: It is unclear why the tool doesn't automatically build with the rest of the U-Boot source
tree. However, the manual build steps below should work.

$ cd $UBOOT
$ cd u-boot-1.1.4-omap3430-lv-som
$ cd tools

PN 1013562A Logic Product Development Company, All Rights Reserved 23

AN 412: Building Linux from Scratch for OMAP35x

$ gcc -g -I../include -Wall -c crc32.c
$ gcc -g -I../include -Wall -c mkimage.c
$ gcc -Wall -o mkimage mkimage.o crc32.o

$ file mkimage

mkimage: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), not stripped

7.6 Make the Tool Available
We need to copy the mkimage tool to a directory included in our PATH so the kernel build system
can find it. We can just copy it into the same directory as the cross tools as we assume that
anytime we are building this code, that directory will be available.

NOTE: The commands below assume you installed the CodeSourcery tools into their default
location or built your own toolchain from scratch following the instructions in this document.

$ cp mkimage $HOME/CodeSourcery/Sourcery_G++_Lite/bin

------------- OR -------------

$ cp mkimage $TOOLS/bin

$ which mkimage

--verify that your shell found the proper program--

PN 1013562A Logic Product Development Company, All Rights Reserved 24

AN 412: Building Linux from Scratch for OMAP35x

8 Extract, Patch, and Build Linux

8.1 Extract Linux Kernel
Unpack the Linux source code that was previously downloaded from http://www.kernel.org

$ cd $ARCHIVE
$ tar -xjf linux-2.6.28-rc8.tar.bz2 -C $KERNEL
$ cd $KERNEL
$ ls

linux-2.6.28-rc8

$ cd linux-2.6.28-rc8
$ ls

arch crypto fs Kbuild Makefile
block Documentation include kernel mm
COPYING drivers init lib net
CREDITS firmware ipc MAINTAINERS README

8.2 Patch the Linux Kernel

8.2.1 Apply Logic-Supplied Patches

Apply the Logic-supplied patches, in the designated order, to the Linux source code. You MUST
be in the root directory of the Linux source code for the commands below to work. You should be
in the same directory as the "COPYING" and "MAINTAINERS" files.

$ for p in $PATCHES/1013108_OMAP35x_Patches_v1.5.0/linux-2.6.28-
rc8/*.patch
> do
> echo "Applying patch ${p}"
> patch -p1 < ${p}
> done

8.2.2 Manually Modify the Linux Kernel File

At the time of this writing, you also need to manually make a minor patch to the Linux kernel
source code if you are using the version of the CodeSourcery tools denoted here.

Patching arch/arm/Makefile
The following change will allow the kernel to compile with the latest release of CodeSourcery
tools.

1. Using any text editor, open arch/arm/Makefile

2. Scroll to approximately line 47

3. Find the lines that read

Note that GCC does not numerically define an architecture version
macro, but instead defines a whole series of macros which makes

PN 1013562A Logic Product Development Company, All Rights Reserved 25

http://www.kernel.org/

AN 412: Building Linux from Scratch for OMAP35x

testing for a specific architecture or later rather impossible.
arch-$(CONFIG_CPU_32v7) :=-D__LINUX_ARM_ARCH__=7 $(call cc-option, \
 -march=armv7a,-march=armv5t -Wa$(comma) \
 -march=armv7a)

NOTE: The above Makefile instruction should be contained on a single line. This
document breaks the line into several lines for readability.

4. Change both instances of armv7a to armv7-a

arch-$(CONFIG_CPU_32v7) :=-D__LINUX_ARM_ARCH__=7 $(call cc-option, \
 -march=armv7-a,-march=armv5t -Wa$(comma) \
 -march=armv7-a)

8.2.3 Rename Linux Kernel Directory (optional)

You may wish to change the name of your Linux kernel directory to denote the fact that it has
been patched and is no longer a "stock" Linux source tree.

$ cd ..
$ mv linux-2.6.28-rc8 linux-2.6.28-rc8-omap3530lv-som
$ cd linux-2.6.28-rc8-omap3530lv-som

8.3 Configure and Build the Linux Kernel
The steps below outline how to configure and build the Linux kernel for Logic's OMAP35x SOM.
You are encouraged to read the kernel documentation for a complete understanding of the
process.

Logic has provided a default, working kernel configuration with the patch-set. Start by using that
and then modify to suit your needs once you have a working system.

NOTE: The uImage target below assumes that you followed the steps in the previous chapter so
the kernel build system can find the mkimage program.

$ cp $PATCHES/1013108_OMAP35x_Patches_v1.5.0/linux-2.6.28-rc8/ \
linux-2.6.28-rc8-pm-omap3530lv_som.config .config

$ make \
> ARCH=arm \
> CROSS_COMPILE=arm-none-linux-gnueabi- \
> menuconfig

You should now be looking at the Linux Kernel Configuration utility. We are going to use an initial
RAM disk (initrd) as our device's root file system. This requires that two kernel options be
enabled. Use the configuration utility to set the CONFIG_BLK_DEV_RAM and
CONFIG_BLK_DEV_INITRD options as described below.

General setup → Initial RAM filesystem and RAM disk support

Device Drivers → Block devices → RAM block device support

PN 1013562A Logic Product Development Company, All Rights Reserved 26

AN 412: Building Linux from Scratch for OMAP35x

$ make \
> ARCH=arm \
> CROSS_COMPILE=arm-none-linux-gnueabi- \
> uImage

$ ls arch/arm/boot

... uImage ...

$ file arch/arm/boot/uImage

arch/arm/boot/uImage: u-boot/PPCBoot image

$ # Copy the uImage file to /tftpboot for later download
$ cp arch/arm/boot/uImage /tftpboot

PN 1013562A Logic Product Development Company, All Rights Reserved 27

AN 412: Building Linux from Scratch for OMAP35x

9 Extract, Configure, and Build BusyBox

9.1 Extract BusyBox
Unpack the BusyBox source code that was previously downloaded from http://www.busybox.net

$ cd $ARCHIVE
$ tar --xjf busybox-1.14.1.tar.bz2 -C $ROOTFS
$ cd $ROOTFS
$ ls

busybox-1.14.1

$ cd busybox-1.14.1
$ ls

applets docs libbb
arch e2fsprogs libpwdgrp
archival editors LICENSE
AUTHORS examples loginutils
Config.in findutils mailutils
console-tools include Makefile
coreutils init Makefile.custom
debianutils INSTALL Makefile.flags

9.2 Configure and Build BusyBox
The steps below outline how to configure and build BusyBox for Logic's OMAP35x SOM. You are
encouraged to read the BusyBox documentation for a complete understanding of the process.

$ make \
> ARCH=arm \
> CROSS_COMPILE=arm-none-linux-gnueabi- \
> defconfig

$ make \
> ARCH=arm \
> CROSS_COMPILE=arm-none-linux-gnueabi- \
> menuconfig

At this point you should be viewing BusyBox's configuration utility. There is one extra
configuration option that we want to set for this tutorial. Since we aren't building a system with
complete libraries, we need to make sure that BusyBox can stand on its own. We can't have it
trying to load dynamic libraries at runtime; therefore, we want to select the option:

Busybox Settings → Build Options → Build BusyBox as a static binary

$ make \
> ARCH=arm \
> CROSS_COMPILE=arm-none-linux-gnueabi-

$ make \
> ARCH=arm \

PN 1013562A Logic Product Development Company, All Rights Reserved 28

http://www.busybox.net/

AN 412: Building Linux from Scratch for OMAP35x

> CROSS_COMPILE=arm-none-linux-gnueabi- \
> install

$ ls _install

bin linuxrc sbin usr

$ ls _install/bin

addgroup date getopt iptunnel
adduser dd grep kill
 ...

$ ls -l _install/bin

lrwxrwxrwx 1 logic logic 7 2009-06-24 21:42 addgroup -> busybox
lrwxrwxrwx 1 logic logic 7 2009-06-24 21:42 adduser -> busybox
lrwxrwxrwx 1 logic logic 7 2009-06-24 21:42 ash -> busybox
-rwxr-xr-x 1 logic logic 847388 2009-06-24 21:42 busybox
 ...

If the build succeeded, you should have almost an entire root file system inside the _install
directory. Notice how all of the programs in _install/bin are actually pointers to the program
BusyBox? That is what is meant by "BusyBox is a multi-call binary."

PN 1013562A Logic Product Development Company, All Rights Reserved 29

AN 412: Building Linux from Scratch for OMAP35x

10 Create a Root File System
This section will show you how to create a simple root file system using initrd and BusyBox.

10.1 Create an Empty Root Filesytem
Start the process by creating a file, filling it with zeros, and then formatting the file as an ext2 file
system.

$ cd $ROOTFS
$ RDSIZE=4000
$ BLKSIZE=1024
$ dd if=/dev/zero of=ramdisk.img bs=$BLKSIZE count=$RDSIZE
$ sudo mke2fs -F -m 0 -b $BLKSIZE ramdisk.img $RDSIZE
[sudo] password for logic:
mke2fs 1.41.3 (12-Oct-2008)
Filesystem label=
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
1000 inodes, 4000 blocks
0 blocks (0.00%) reserved for the super user
First data block=1
Maximum filesystem blocks=4194304
1 block group
8192 blocks per group, 8192 fragments per group
1000 inodes per group

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 21 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

$ file ramdisk.img

ramdisk.img: Linux rev 1.0 ext2 filesystem data

10.2 Mount the Root File System
Assuming the steps above worked, you now have a 4MB file in the $ROOTFS directory which
has been formatted with ext2 data. We will use Linux's loopback device to mount that file as if it
were any other file system.

$ mkdir mnt
$ sudo mount -t ext2 -o loop ./ramdisk.img ./mnt
$ ls mnt

lost+found

10.3 Populate the Root File System
Now it is time to populate the root file system with the directories, files, links, and programs we
want on the end device.

PN 1013562A Logic Product Development Company, All Rights Reserved 30

AN 412: Building Linux from Scratch for OMAP35x

NOTE: Many of the commands below are prefixed by "sudo" because we need the items created
to be "owned" by root.

10.3.1 Create Standard Directories

Start by creating a standard set of subdirectories for the root file system.

$ sudo mkdir ./mnt/dev
$ sudo mkdir -m 777 ./mnt/etc
$ sudo mkdir ./mnt/home
$ sudo mkdir ./mnt/lib
$ sudo mkdir ./mnt/mnt
$ sudo mkdir ./mnt/opt
$ sudo mkdir ./mnt/proc
$ sudo mkdir ./mnt/root
$ sudo mkdir ./mnt/sys
$ sudo mkdir ./mnt/tmp
$ sudo mkdir ./mnt/var

10.3.2 Create Standard Devices

Create some standard /dev files.

$ cd ./mnt/dev
$ sudo mknod -m 660 console c 5 1
$ sudo mknod -m 660 fb0 c 29 0
$ sudo mknod -m 660 kmem c 1 2
$ sudo mknod -m 660 mem c 1 1
$ sudo mknod -m 666 null c 1 3
$ sudo mknod -m 660 ram0 b 1 0
$ sudo mknod -m 664 random c 1 8
$ sudo mknod -m 600 ttyS0 c 4 64
$ sudo mknod -m 664 urandom c 1 9
$ sudo mknod -m 666 zero c 1 5

10.3.3 Copy BusyBox Binaries to Root File System

BusyBox built almost everything we need for a small root file system, copy it into our image.

$ cd $ROOTFS/mnt/
$ sudo cp -dpRv $ROOTFS/busybox-1.14.1/_install/* .
$ cd $ROOTFS

10.3.4 Create a Startup Script

For now, we will create a simple welcome message.

$ sudo mkdir -m 777 ./mnt/etc/init.d
$ touch ./mnt/etc/init.d/rcS
$ cat >> ./mnt/etc/init.d/rcS << EOF
> #!/bin/ash
> echo "Hello World!"
> mount -t proc /proc /proc
> mount -t sysfs none /sys
> EOF

PN 1013562A Logic Product Development Company, All Rights Reserved 31

AN 412: Building Linux from Scratch for OMAP35x

10.3.5 Fix Ownership and Group Settings

Oftentimes, copying the files from BusyBox will keep the owner and group settings that they were
built with. In general, we want all of the files that we've copied to our root file system so far to be
"owned" by root. Use the chown and chgrp commands to change these settings.

$ cd $ROOTFS
$ sudo chown root -h --recursive -L ./mnt
$ sudo chgrp root -h --recursive -L ./mnt

10.4 Finish the Root File System
The last things to do are unmount the newly create file system, compress it, and use U-Boot's
mkimage tool to format it.

10.4.1 Unmount the file system.
$ cd $ROOTFS
$ sudo umount ./mnt

10.4.2 Compress the Root File System

Now that we have un-mounted the file system, we can work directly with the file again.

$ gzip -9 ramdisk.img

10.4.3 Repackage the Root File System

As mentioned previously, U-Boot expects the binary objects it loads to be packaged in a specific
manner. The root file system is no different than the Linux kernel. We can use the mkimage tool
to package it.

$ mkimage \
> -A arm \
> -O linux \
> -T ramdisk \
> -C gzip \
> -n uboot ext2 ramdisk rootfs \
> -d ramdisk.img.gz \
> uInitrd

Image Name:
Created: Wed Jun 24 23:29:26 2009
Image Type: ARM Linux RAMDisk Image (gzip compressed)
Data Size: 980445 Bytes = 957.47 kB = 0.94 MB
Load Address: 0x00000000
Entry Point: 0x00000000

$ file uInitrd

uInitrd: u-boot/PPCBoot image

$ cp uInitrd /tftpboot

PN 1013562A Logic Product Development Company, All Rights Reserved 32

AN 412: Building Linux from Scratch for OMAP35x

11 Download and Execute U-Boot and Linux
If all has gone well so far, you are ready to start running things on real hardware.

11.1 Prepare Development Kit
Prepare to connect to the development hardware.

1. Connect the development kit to the network via Ethernet.

2. Connect the development kit's serial port to your PC using the serial cable provided.

3. Power on the development kit.

4. Launch minicom (or other terminal emulator) on your PC.

When you are properly connected, you should see the LogicLoader splash screen (version
numbers may be different than what appears below):

NoLo Version : 2.4.6-OMAP3503 0001
NoLo Build : LPD386 Tue Nov 25 15:00:19 CST 2008
NoLo Compiler: gcc version 4.2.1
Image type : Elf
Boot Device : NAND

 LogicLoader

 (c) Copyright 2002-2008, Logic Product Development, Inc.
 All Rights Reserved.
 Version 2.4.6-OMAP3503 0001

losh>

11.2 Erase Previous U-Boot Environment
When U-Boot is run on the development kit, it saves its environment in a sector of on-board flash.
Since we are just getting started with our newly built system, let's erase any possible remnants of
previous boots.

losh> erase /dev/nand0 B2047 B1
erasing nand: 100%
erased '/dev/nand0' start=0x7ff: len=0x1 bytes/blocks skipped 0

11.3 Download and Launch U-Boot
There are many ways to load the U-Boot file that we've created. We can load it over the serial
port, from a CompactFlash or SD/MMC memory card, or from a previously created flash partition
(please see the LogicLoader User Manual for complete information). For the purposes of this
tutorial, we will download all items to the kit using TFTP.

PN 1013562A Logic Product Development Company, All Rights Reserved 33

AN 412: Building Linux from Scratch for OMAP35x

losh> ifconfig sm0 dhcp
losh> load elf /tftp/187.199.127.1:u-boot
loading from /tftp/187.199.127.1:u-boot:
...
ELF section 0: download address: 0x80208000 load address: 0x80e80000
loaded 133528 @ 0x80e80000 Ram
...done
file loaded

losh> exec
U-Boot 1.1.4 (Jun 24 2009 - 23:57:03)

OMAP3430-GP rev 2, CPU-OPP2 L3-133MHz
OMAP3430LV_SOM 0.1 Version + mDDR (Boot NAND)
DRAM: 128 MB
FLASH: initialize in sync mode
NAND: 256 MiB
*** Warning - bad CRC or NAND, using default environment

Read production data: done
Part Number : 1010194
Model Name : SOMOMAP3530-10-1672IFCR-A
Serial Number: 3308M00295
In: serial
Out: serial
Err: serial
======================NOTICE============================
This is the first time that you boot up this board. You are
required to set a valid display for your LCD panel.
Enter the display number of the LCD panel(none for no LCD panel)
Pick one of:
2 == LQ121S1DG31 TFT SVGA (12.1) Sharp
3 == LQ036Q1DA01 TFT QVGA (3.6) Sharp w/ASIC
5 == LQ064D343 TFT VGA (6.4) Sharp
7 == LQ10D368 TFT VGA (10.4) Sharp
15 == LQ043T1DG01 TFT WQVGA (4.3) Sharp
MAKE SURE YOUR DISPLAY IS CORRECTLY ENTERED!
Please enter your LCD display number:

When U-Boot launches, enter the proper display number, and then interrupt its "autoboot"
mechanism by pressing a key before the 6-second timeout.

11.4 Create a New U-Boot Environment
Since we erased any previously stored U-Boot environment using the LogicLoader's erase
command, we need to reestablish a default and sane group of settings. The steps below should
be treated as a guideline for your own work by adapting the IP addresses for your own network.
Please remember to read the U-Boot documentation and user manual for more information; it
should be the definitive reference for your scenario.

=> set ipaddr 187.199.127.107
=> set serverip 187.199.127.1
=> set netmask 255.255.255.0
=> save
Saving Environment to NAND...
Erasing Nand...Writing to Nand... done

PN 1013562A Logic Product Development Company, All Rights Reserved 34

AN 412: Building Linux from Scratch for OMAP35x

=> tftp ${loadaddr} uImage
=> tftp ${rootfsaddr} uInitrd
=> bootm ${loadaddr} ${rootfsaddr}
Booting image at 81000000 ...
 Image Name: Linux-2.6.28-rc8-omap1
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 2100416 Bytes = 2 MB
 Load Address: 80008000
 Entry Point: 80008000
 Verifying Checksum ... OK
OK
Loading Ramdisk Image at 81300000 ...
 Image Name:
 Image Type: ARM Linux RAMDisk Image (gzip compressed)
 Data Size: 980445 Bytes = 957.5 kB
 Load Address: 00000000
 Entry Point: 00000000
 Verifying Checksum ... OK

Starting kernel ...

Uncompressing Linux.......................................
Linux version 2.6.28-rc8-omap1
 ...

PN 1013562A Logic Product Development Company, All Rights Reserved 35

AN 412: Building Linux from Scratch for OMAP35x

12 References

12.1 Books
Reinhart, Peter. The Bread Baker's Apprentice: Mastering the Art of Extraordinary Bread. Ten

Speed Press, 2004. ISBN 1-58008-268-8.

Stallman, Richard M. and GCC Development Community. Using the GNU Compiler Collection: A
GNU Manual For GCC Version 4.4.0. Free Software Foundation, Inc., 2008.

von Hagen, William. The Definitive Guide to GCC. Second Edition. Apress, 2006.
ISBN 1-59059-585-8.

Yaghmour, Karim. Building Embedded Linux Systems. O'Reilly & Associates, Inc., 2003.
ISBN 0-596-00222-X.

12.2 Online Resources
Jones, Tim M. "Linux initial RAM disk (initrd) overview." IBM developerWorks, 2006,

http://www.ibm.com/developerworks/linux/library/l-initrd.html (accessed July 6, 2009).

Kegel, Dan. "Building and Testing gcc/glibc cross toolchains." kegel.com, 2003,
http://www.kegel.com/crosstool/ (accessed July 1, 2009).

PN 1013562A Logic Product Development Company, All Rights Reserved 36

http://www.ibm.com/developerworks/linux/library/l-initrd.html
http://www.kegel.com/crosstool/

AN 412: Building Linux from Scratch for OMAP35x

13 Contact Information
Please visit our website where you can download software, documentation, and participate in on-
line discussions: http://www.logicpd.com

For more information regarding Logic's services or products, please send an email to:
product.sales@logicpd.com

For technical support regarding any of Logic's products, please review the options on the product
support page: http://www.logicpd.com/product-support

PN 1013562A Logic Product Development Company, All Rights Reserved 37

http://www.logicpd.com/
mailto:product.sales@logicpd.com
http://www.logicpd.com/product-support

AN 412: Building Linux from Scratch for OMAP35x

Appendix A: Sample Scripts
This appendix includes several sample BASH scripts that you may use to automate many of the
steps discussed in this tutorial.

Project Environment Variables
Below is a BASH script you may use to setup the project's environment variables as detailed in
this document.

#!/bin/bash

!!! NOTE !!! You *must* "source" this script to properly export the
variables it declares to the shell from which it was invoked.

To do so, run the script using one of the following methods:
bash$. ./this_script
- or -
bash$ source ./this_script

echo
echo "Setting up some environment variables to use as shortcuts"
echo "throughout the rest of the tutorial."
echo

export PRJROOT=$HOME/olfs
export ARCHIVE=$PRJROOT/archive
export PATCHES=$PRJROOT/patches
export KERNEL=$PRJROOT/kernel
export UBOOT=$PRJROOT/u-boot
export ROOTFS=$PRJROOT/rootfs

The following environment variables are used if you decide to try
building the cross-compilation toolchain from scratch.
export TARGET=arm-none-linux-gnueabi
export PREFIX=$PRJROOT/tools
export BUILDTOOLS=$PRJROOT/build-tools
export TARGET_PREFIX=$PREFIX/$TARGET
export SYSROOT=$PREFIX/$TARGET/sysroot

The next export assumes that you've either installed the CodeSourcery
tools into their default location or that you followed the
instructions
to build your own toolchain from scratch. Uncomment the appropriate
choice, or adjust accordingly.
export PATH=$HOME/CodeSourcery/Sourcery_G++_Lite/bin:$PATH
export PATH=$PREFIX/bin:$PATH

echo "Exported the following environment varibles:"
echo " PRJROOT => $PRJROOT"
echo " ARCHIVE => $ARCHIVE"
echo " PATCHES => $PATCHES"
echo " KERNEL => $KERNEL"
echo " UBOOT => $UBOOT"
echo " ROOTFS => $ROOTFS"
echo " PREFIX => $PREFIX"
echo " BUILDTOOLS => $BUILDTOOLS"

PN 1013562A Logic Product Development Company, All Rights Reserved 38

AN 412: Building Linux from Scratch for OMAP35x

echo " SYSROOT => $SYSROOT"
echo " TARGET => $TARGET"
echo

Check to see if PATH can actually find our cross-compiler.
COMPILER=`which $TARGET-gcc`
if [-n "$COMPILER"]
then
 echo "Using $TARGET cross-platform development tools found
here:"
 echo " $COMPILER"
else
 echo "Can't find $TARGET tools."
 echo "Either your PATH variable isn't set correctly, or you
have not"
 echo "yet built/installed the cross-platform development
toolchain."
fi
echo

Project Directory Structure
Below is a sample BASH script you may use to setup the project's directory structure as detailed
in this document.

#!/bin/bash

if test "${PRJROOT+set}" != set; then
 echo "!!! Environment variable PRJROOT _not_ set !!!"
 PRJROOT=$HOME/olfs
 echo "Defaulting to $PRJROOT."
 echo "Please double check this if you are using other scripts
to"
 echo "setup the environment for this tutorial."
else
 echo "Creating project directory tree at $PRJROOT"
fi

echo
echo "Creating OLFS directory structure"
echo

if [! -d $PRJROOT]; then
 mkdir $PRJROOT
fi

if [! -d $PRJROOT/archive]; then
 mkdir $PRJROOT/archive
fi

if [! -d $PRJROOT/patches]; then
 mkdir $PRJROOT/patches
fi

if [! -d $PRJROOT/kernel]; then
 mkdir $PRJROOT/kernel

PN 1013562A Logic Product Development Company, All Rights Reserved 39

AN 412: Building Linux from Scratch for OMAP35x

fi

if [! -d $PRJROOT/u-boot]; then
 mkdir $PRJROOT/u-boot

if [! -d $PRJROOT/rootfs]; then
 mkdir $PRJROOT/rootfs
fi

if [! -d $PRJROOT/build-tools]; then
 mkdir $PRJROOT/build-tools
fi

if [! -d $PRJROOT/tools]; then
 mkdir $PRJROOT/tools
fi

echo "Project created at $PRJROOT"
ls $PRJROOT

Download Packages
Below is a sample BASH script you may use to download all of the packages used in this tutorial.
Please note that this script will not download the patches from Logic. You will need to login to
your account at http://support.logicpd.com/auth/ to access them.

#!/bin/bash

FAIL=0

if test "${ARCHIVE+set}" != set; then
 echo "!!! Environment variable ARCHIVE _not_ set !!!"
 echo "Please double check to see that you have your"
 echo "environment variables properly exported."
 exit
fi

echo
echo "Downloading source code packages:"
echo " linux-2.6.28-rc8.tar.bz2"
echo " u-boot-1.1.4.tar.bz2"
echo " busybox-1.14.1.tar.bz2"
echo " CodeSourcery Sourcery G++ Lite 2009q1-203 for ARM GNU/Linux"
echo
echo "This could take some time..."

pushd $ARCHIVE

Download Linux kernel version 2.6.28-rc8
wget -c -t 5 -N
http://www.kernel.org/pub/linux/kernel/v2.6/testing/v2.6.28/linux-
2.6.28-rc8.tar.bz2

if (($?)) ; then FAIL=1 ; fi

Download kernel signature file (optional)

PN 1013562A Logic Product Development Company, All Rights Reserved 40

http://support.logicpd.com/auth/

AN 412: Building Linux from Scratch for OMAP35x

wget -c -t 5 -N
http://www.kernel.org/pub/linux/kernel/v2.6/testing/v2.6.28/linux-
2.6.28-rc8.tar.bz2.sign

if (($?)) ; then FAIL=1 ; fi

Download u-boot version 1.1.4
wget -c -t 5 -N ftp://ftp.denx.de/pub/u-boot/u-boot-1.1.4.tar.bz2

if (($?)) ; then FAIL=1 ; fi

Download busybox version 1.14.1
wget -c -t 5 -N http://www.busybox.net/downloads/busybox-1.14.1.tar.bz2

if (($?)) ; then FAIL=1 ; fi

Download the CodeSourcery (www.codesourcery.com) tools.
Note, we rename the downloaded file using the "-O" switch to wget
because
the CodeSourcery site will accidentally insert a ? and some other PHP
items
in the downloaded file name. They don't hurt anything, but this just
makes it cleaner.
wget -c -t 5 -O arm-2009q1-203-arm-none-linux-gnueabi.bin
http://www.codesourcery.com/sgpp/lite/arm/portal/package4573/public/arm
-none-linux-gnueabi/arm-2009q1-203-arm-none-linux-gnueabi.bin

if (($?)) ; then FAIL=1 ; fi

Download CodeSourcery's outstanding "Getting Started Guide."
wget -c -t 5 -N
http://www.codesourcery.com/sgpp/lite/arm/portal/doc4337/getting-
started.pdf

if (($?)) ; then FAIL=1 ; fi

if (($FAIL)); then
 echo "!!! !!! !!!"
 echo "Some downloads may have failed. Please re-run the
script"
 echo "to try and continue fetching the packages."
 echo "!!! !!! !!!"
fi

echo
echo "Don't forget to login to http://www.logicpd.com and download the"
echo "appropriate zip file containing u-boot and kernel patches."
echo "Check this link:"
echo "
http://support.logicpd.com/auth/downloads/OMAP35x%20Zoom%20Development%
20Kit/#linux"
echo "Look for the \"OMAP35x Linux Demo Image Patch Set\" link."
echo
echo
echo "Downloaded files are in $ARCHIVE"
echo

PN 1013562A Logic Product Development Company, All Rights Reserved 41

AN 412: Building Linux from Scratch for OMAP35x

popd

Build Root File System
Below is a sample BASH script you may use to automate the steps used to create the root file
system. This script assumes that you have already configured and built BusyBox.

#!/bin/bash

if test "${ROOTFS+set}" != set; then
 echo "!!! Environment variable ROOTFS _not_ set !!!"
 ROOTFS=$HOME/olfs/rootfs
 echo "Defaulting to $ROOTFS."
 echo "Please double check this if you are using other scripts
to"
 echo "setup the environment for this tutorial."
else
 echo "Creating root file system at $ROOTFS"
fi

pushd $ROOTFS

Clean up previous builds
rm -fv ramdisk.img
rm -fv ramdisk.img.gz
rm -fv uInitrd

RAMDISK variables
RDSIZE=4000
BLKSIZE=1024

Create the empty ramdisk image
dd if=/dev/zero of=./ramdisk.img bs=$BLKSIZE count=$RDSIZE
sudo mke2fs -F -m 0 -b $BLKSIZE ./ramdisk.img $RDSIZE

Mount so we can populate
if [! -d ./mnt]; then
 mkdir ./mnt
fi

sudo mount -t ext2 -o loop ./ramdisk.img ./mnt

Populate a set of standard sub-directories
sudo mkdir ./mnt/dev
sudo mkdir -m 777 ./mnt/etc
sudo mkdir ./mnt/home
sudo mkdir ./mnt/lib
sudo mkdir ./mnt/mnt
sudo mkdir ./mnt/opt
sudo mkdir ./mnt/proc
sudo mkdir ./mnt/root
sudo mkdir ./mnt/sys
sudo mkdir ./mnt/tmp
sudo mkdir ./mnt/var

Create standard devices

PN 1013562A Logic Product Development Company, All Rights Reserved 42

AN 412: Building Linux from Scratch for OMAP35x

PN 1013562A Logic Product Development Company, All Rights Reserved 43

cd ./mnt/dev
sudo mknod -m 660 console c 5 1
sudo mknod -m 660 fb0 c 29 0
sudo mknod -m 660 kmem c 1 2
sudo mknod -m 660 mem c 1 1
sudo mknod -m 666 null c 1 3
sudo mknod -m 660 ram0 b 1 0
sudo mknod -m 664 random c 1 8
sudo mknod -m 600 ttyS0 c 4 64
sudo mknod -m 664 urandom c 1 9
sudo mknod -m 666 zero c 1 5

Copy BusyBox into the root file system
cd $ROOTFS/mnt/
sudo cp -dpR $ROOTFS/busybox-1.14.1/_install/* .
cd $ROOTFS

Create a simple startup message
sudo mkdir -m 777 ./mnt/etc/init.d
touch ./mnt/etc/init.d/rcS

cat >> ./mnt/etc/init.d/rcS << EOF
#!/bin/ash
echo
echo "Hello, world!"
echo
mount -t proc /proc /proc
mount -t sysfs none /sys
EOF

sudo chmod +x ./mnt/etc/init.d/rcS

Double check ownership and group settings
cd $ROOTFS
sudo chown root -h --recursive -L ./mnt
sudo chgrp root -h --recursive -L ./mnt

Finish up
sudo umount ./mnt
gzip -9 ./ramdisk.img
mkimage -A arm -O linux -T ramdisk -C gzip -d ramdisk.img.gz uInitrd

cp -v ./uInitrd /tftpboot
echo "Root file system should be in /tftpboot/uInitrd"

popd

	Revision History
	Table of Contents
	1 Introduction
	1.1 Audience
	1.2 Scope and Background Information
	1.3 Hardware Used
	1.4 Software Used
	2.1 Project Environment Variables
	2.2 Project Directory Structure

	3 Download the Project's Packages
	3.1 Package Overview
	3.2 Download Logic Patches
	3.3 Download Linux Kernel
	3.3.1 Verifying Downloaded Software

	3.4 Download U-Boot
	3.5 Download BusyBox
	3.6 Download CodeSourcery Tools; Sourcery G++ Lite Edition
	3.7 Download Pure GNU Tools

	4 Install the CodeSourcery Tools
	4.1 Dealing with the DASH Shell
	4.2 Install Sourcery G++ Lite
	4.3 Adjust PATH Environment Variable

	5 Build Toolchain from Scratch
	5.1 Extract and Patch the GNU Tools
	5.1.1 Extract the GNU Tools
	5.1.2 Extract the GNU Patches
	5.1.3 Patch Binutils
	5.1.4 Patch GCC

	5.2 Create Temporary Build Directories
	5.3 Configure and Build Binutils
	5.4 Configure and Build GCC Bootstrap Compiler
	5.5 Configure and Install the Kernel Headers
	5.6 Understanding GCC Multilib
	5.7 Install the Default GLIBC Headers
	5.8 Install the VFP Multilib Headers
	5.9 Configure and Build GCC-2
	5.10 Build and Install the Default Cross-GLIBC Library
	5.11 Build and Install the VFP Multilib Cross-GLIBC Library
	5.12 Configure and Build Final GCC
	5.13 Copy GCC Libraries

	6 Extract Logic Patches
	7 Extract, Patch, and Build U-Boot
	7.1 Extract U-Boot
	7.2 Patch U-Boot
	7.2.1 Apply Logic-Supplied Patches
	7.2.2 Manually Modify a U-Boot File

	Patching lib_arm/board.c
	7.2.3 Rename U-Boot Directory (optional)

	7.3 Configure and Build U-Boot
	7.4 Build and Install the U-Boot mkimage Tool
	7.5 Build mkimage
	7.6 Make the Tool Available

	8 Extract, Patch, and Build Linux
	8.1 Extract Linux Kernel
	8.2 Patch the Linux Kernel
	8.2.1 Apply Logic-Supplied Patches
	8.2.2 Manually Modify the Linux Kernel File

	Patching arch/arm/Makefile
	8.2.3 Rename Linux Kernel Directory (optional)

	8.3 Configure and Build the Linux Kernel

	9 Extract, Configure, and Build BusyBox
	9.1 Extract BusyBox
	9.2 Configure and Build BusyBox

	10 Create a Root File System
	10.1 Create an Empty Root Filesytem
	10.2 Mount the Root File System
	10.3 Populate the Root File System
	10.3.1 Create Standard Directories
	10.3.2 Create Standard Devices
	10.3.3 Copy BusyBox Binaries to Root File System
	10.3.4 Create a Startup Script
	10.3.5 Fix Ownership and Group Settings

	10.4 Finish the Root File System
	10.4.1 Unmount the file system.
	10.4.2 Compress the Root File System
	10.4.3 Repackage the Root File System

	11 Download and Execute U-Boot and Linux
	11.1 Prepare Development Kit
	11.2 Erase Previous U-Boot Environment
	11.3 Download and Launch U-Boot
	11.4 Create a New U-Boot Environment

	12 References
	12.1 Books
	12.2 Online Resources

	13 Contact Information
	Appendix A: Sample Scripts
	Project Environment Variables
	Project Directory Structure
	Download Packages
	Build Root File System

