

# **OMAP35x SOM-LV Power Management**

Application Note 388

Logic PD // Products Published: October 2008 Last revised: July 2010

### Abstract

This Application Note provides a high-level explanation of power management schemes available on the OMAP35x SOM-LV.

This document contains valuable proprietary and confidential information and the attached file contains source code, ideas, and techniques that are owned by Logic Product Development Company (collectively "Logic PD's Proprietary Information"). Logic PD's Proprietary Information may not be used by or disclosed to any third party except under written license from Logic Product Development Company.

Logic Product Development Company makes no representation or warranties of any nature or kind regarding Logic PD's Proprietary Information or any products offered by Logic Product Development Company. Logic PD's Proprietary Information is disclosed herein pursuant and subject to the terms and conditions of a duly executed license or agreement to purchase or lease equipment. The only warranties made by Logic Product Development Company, if any, with respect to any products described in this document are set forth in such license or agreement. Logic Product Development Company shall have no liability of any kind, express or implied, arising out of the use of the Information in this document, including direct, indirect, special or consequential damages.

Logic Product Development Company may have patents, patent applications, trademarks, copyrights, trade secrets, or other intellectual property rights pertaining to Logic PD's Proprietary Information and products described in this document (collectively "Logic PD's Intellectual Property"). Except as expressly provided in any written license or agreement from Logic PD's Intellectual Property, this document and the information contained therein does not create any license to Logic PD's Intellectual Property.

The Information contained herein is subject to change without notice. Revisions may be issued regarding changes and/or additions.

© Copyright 2010, Logic Product Development Company. All Rights Reserved.

| REV | EDITOR   | DESCRIPTION                                                                                                                                                                           | APPROVAL | DATE     |
|-----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|
| А   | NJK      | Initial release                                                                                                                                                                       | NJK      | 10/06/08 |
| В   | NJK      | -Added 80uF capacitor requirement to "Power on 5V" Section                                                                                                                            | JCA      | 11/13/08 |
| С   | NJK      | -Removed "Power on 5V" Section and information pertaining to the option of powering the SOM directly through the 5V signal; -Added Section 3.1.1                                      | NJK      | 12/01/08 |
| D   | NJK      | -Section 2.1: Added 80 uF capacitor requirement to MAIN_BATTERY;<br>-Added Section 4 "Reference Voltages"                                                                             | BSB      | 02/06/09 |
| E   | NJK      | -Section 3.1: Updated connections descriptions for 5V and USB1_VBUS;<br>-Added Section 4 and moved the previous content from Section 3.1.1 here                                       | BSB      | 02/04/10 |
| F   | JCA, NJK | -Section 3.1 & 3.2: Corrected description for USB1_VBUS<br>-Section 4.1: Added note about ambient temperatures;<br>-Section 7: Added section for power supplies;<br>-Added Appendix A | RAH      | 04/21/10 |
| G   | JCA, NJK | -Section 2.1: Added section about powering on the SOM;<br>- Section 5: Added section for external battery charging                                                                    | JCA, BSB | 07/09/10 |

# **Revision History**

# **Table of Contents**

| 1 Introduction                                                                  | . 1 |
|---------------------------------------------------------------------------------|-----|
| 2 OMAP35x SOM-LV Power                                                          | . 1 |
| 2.1 Powering On the SOM                                                         | . 1 |
| 3 Recommended Power Management Paths                                            | . 1 |
| 3.1 Lithium-ion Battery Powered                                                 | . 1 |
| 3.2 No Battery Power                                                            | 2   |
| 4 Charging a Battery using the TPS65950                                         | . 2 |
| 4.1 Usage Scenarios                                                             | 3   |
| 4.1.1 Usage: Max current at typical room temperature                            | 3   |
| 4.1.2 Usage: Max current at typical room temperature with heat-save             |     |
| 4.1.3 Usage: Max current at temperatures below 40°C with heat-save and 5V input | . 3 |
| 4.1.4 Usage: Max current at room temperature and USB charging                   | 3   |
| 4.1.5 Usage: Max temperature with safe current                                  |     |
| 4.1.6 Usage: Max temperature with safe current and with heat-save               | 3   |
| 4.2 Key Battery Charging Registers                                              | 3   |
| 5 External Battery Charging                                                     | 4   |
| 6 Reference Voltages                                                            | 4   |
| 7 Power Supplies                                                                |     |
| 7.1 VAUX4                                                                       |     |
| 7.2 Sample Script to Enable VAUX4                                               | 5   |
| 8 Summary                                                                       |     |
| Appendix A: Sample Scripts                                                      | 6   |

### 1 Introduction

This document summarizes how power management is handled on the OMAP35x SOM-LV and offers different approaches for implementing power management schemes in custom applications.

### 2 OMAP35x SOM-LV Power

The OMAP35x SOM-LV can be powered by several different sources since the power rails on the SOM have been divided to allow for flexibility. The table below lists the different power sources and a brief description of each.

| Power Source | Description                                                                                                                                                                                                                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAIN_BATTERY | External power source input. This signal should be driven directly by a single-cell lithium-ion battery or a fixed 3.3V regulated power source.                                                                                |
| 5V           | 5V power input. Used by power management controller to charge external MAIN_BATTERY supply.                                                                                                                                    |
| 3.3V         | External 3.3V power input. This signal supplies power to 3.3V components on the SOM.                                                                                                                                           |
| BACKUP_BATT  | External input that supplies power to the onboard power management controller and real time clock (RTC) interface. This signal should be powered by a coin-cell type battery or an always-on power source.                     |
| USB1_VBUS    | May be used to charge the battery. <b>NOTE:</b> Current limited by USB specification; a FET must be present at reference designator U24 for USB charging. Please see the <i>OMAP35x SOM-LV Schematic</i> for more information. |

#### 2.1 Powering On the SOM

The OMAP35x SOM-LV will power on when MAIN\_BATTERY is supplied to the SOM; all other signals may remain in their default state. The SOM will also power on if 5V is supplied (without MAIN\_BATTERY), however, this is not a supported operating mode. Supplying USB1\_VBUS to the SOM will not power on the SOM.

The PWRON signal may be used to power on/off the SOM only after MAIN\_BATTERY has been supplied to the SOM and software must setup the signal before it becomes a valid power switch. MAIN\_BATTERY must be supplied to the SOM at all times when using the PWRON signal to power on/off the SOM. Please see Texas Instruments' *TPS65950 OMAP Power Management and System Companion Device ES 1.0 TRM* (literature number SWCU050) for more information. This document is available for download from TI's website: http://focus.ti.com/docs/prod/folders/print/tps65950.html#technicaldocuments

### **3** Recommended Power Management Paths

#### 3.1 Lithium-ion Battery Powered

If a lithium-ion battery is used, the input power supplies should be connected as follows:

| Power Source | Connections for Power through Lithium-ion Battery                                                                                                                                                                                                                      |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MAIN_BATTERY | Connect to the lithium-ion battery. Recommend connecting a minimum 80uF capacitor to this rail on the baseboard.                                                                                                                                                       |
| 5V           | Can be connected to a DC voltage source to charge the MAIN_BATTERY. If connected, this signal will be used as a charging source in this context. If the TPS65950 is not going to be used as the charging source of the battery, this input should be connected to GND. |
| 3.3V         | Connect to a 3.3V supply.                                                                                                                                                                                                                                              |

| Power Source | Connections for Power through Lithium-ion Battery                                                                                                                                                                                                                                                                   |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BACKUP_BATT  | Connect to a coin-cell type battery or an always-on power source if desired. If not used, connect to GND.                                                                                                                                                                                                           |
| USB1_VBUS    | Can be connected to a USB host to charge the MAIN_BATTERY. Software is required to enable charging. <b>NOTE:</b> USB charging current is limited by the USB specification; a FET must be present at reference designator U24 for USB charging. Please see the <i>OMAP35x SOM-LV Schematic</i> for more information. |

Please contact Logic PD for reference designs that use a lithium-ion battery.

#### 3.2 No Battery Power

To power the SOM without using a battery, the input power supplies should be connected as follows:

| Power Source | Connections for Power through MAIN_BATTERY                                                                                                                                                              |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| MAIN_BATTERY | Connect to a fixed 3.3V regulated power source. Recommend connecting a minimum 80uF capacitor to this rail on the baseboard.                                                                            |  |
| 5V           | Connect to GND.                                                                                                                                                                                         |  |
| 3.3V         | Connect to a 3.3V supply.                                                                                                                                                                               |  |
| BACKUP_BATT  | Connect to a coin-cell type battery or an always-on power source if desired. If not used, connect to GND.                                                                                               |  |
| USB1_VBUS    | Should only be used as an output power source. USB1_VBUS will try to charge MAIN_BATTERY if a FET at U24 is present and software enables charging, which may damage the PMIC or MAIN_BATTERY circuitry. |  |

### 4 Charging a Battery using the TPS65950

The OMAP35x SOM-LV was designed to optimize space and cost constraints; that level of optimization required necessary tradeoffs that may impact battery charging. Please adhere to the following guidelines when designing an application that utilizes battery charging; also, please note that some applications may require an external charger.

The OMAP35x SOM-LV is designed to support DC current-nonlimited chargers on the 5V rail and to support USB charging on USB1\_VBUS. The 5V input to the SOM can support input voltages from 4.6V-7.0V. Because the input voltage directly relates to the power loss in the Power MOSFET (P = IV), the lower the input voltage the higher the amount of current that can go through the FET. The minimum voltage that the charger can handle is defined as:

VBATMAX + 2 PMOS drop + 0.22 Ohm resistor drop (where VBATMAX is the maximum voltage value of the battery; that is, 4.2V for Li-ion battery)

For a Li-ion battery, the input can go down to about 4.6V given the circuitry of the SOM. Using a 4.6V input to the 5V charging power rail of the SOM will help improve the amount of charge current that can be delivered to the battery.

The current that flows through the charging circuitry is shared between the system and the battery; so the more current that is used by the system, the less current remains for battery charging. Because of this, it is recommended to charge the battery with the processor in a low power or sleep state. Additional charging current will also go to the battery if the baseboard components are powered directly by the DC charger when it is inserted.

The following examples provide scenarios for using battery charging on the SOM. There may be more options than what are listed below. If your application does not fit any of these guidelines, please contact Logic PD support for help evaluating your charging needs (use Logic PD's <u>Ask a Question</u> web form to contact technical support).

#### 4.1 Usage Scenarios

**Note:** All of the temperatures listed below are ambient temperatures. Enclosing the OMAP35x SOM-LV in a case will require special attention to airflow and heat dissipation.

#### 4.1.1 Usage: Max current at typical room temperature

**Setup:** 4.6V input to 5V power rail of the SOM; Li-ion battery operating from 3.2V (start of main charge) to 4.2V (end of charge)

When using the SOM at typical room temperatures (below 30°C), it is recommended to limit the total current through the SOM to 0.6A. This will provide safe operating conditions for all ICs in the power path.

#### 4.1.2 Usage: Max current at typical room temperature with heat-save

**Setup:** 4.6V input to 5V power rail of the SOM; Li-ion battery operating from 3.2V (start of main charge) to 4.2V (end of charge)

When using the heat-save feature of the TPS65950 at typical room temperatures (below 30°C), the starting current threshold should be set to 0.541A. The heat-save voltage threshold can be set to 3.95V and the charging current can be set to 1.2A when above that voltage.

#### 4.1.3 Usage: Max current at temperatures below 40°C with heat-save and 5V input

**Setup:** 5.0V input to 5V power rail of the SOM; Li-ion battery operating from 3.2V (start of main charge) to 4.2V (end of charge)

When using the heat-save feature of the TPS65950 at temperatures below 40°C, the starting current threshold should be set to 0.42A. The heat-save voltage threshold can be set to 4.0V and the charging current can be set to 0.75A when above that voltage.

#### 4.1.4 Usage: Max current at room temperature and USB charging

**Setup:** 5.0V input to USB1\_VBUS power rail of the SOM; Li-ion battery operating from 3.2V (start of main charge) to 4.2V (end of charge)

When using the SOM at typical room temperatures (below 30°C), it is recommended to limit the total current through the SOM to 0.45A. This will provide safe operating conditions for all ICs in the power path.

#### 4.1.5 Usage: Max temperature with safe current

**Setup:** 4.6V input to 5V power rail of the SOM; Li-ion battery operating from 3.2V (start of main charge) to 4.2V (end of charge)

To operate the SOM at temperatures up to 60°C, the charge current should be set to 0.44A.

#### 4.1.6 Usage: Max temperature with safe current and with heat-save

**Setup:** 4.6V input to 5V power rail of the SOM; Li-ion battery operating from 3.2V (start of main charge) to 4.2V (end of charge)

When using the heat-save feature of the TPS65950 at temperatures up to 60°C, the starting current threshold should be set to 0.42A. The heat-save voltage threshold can be set to 4.0V and the charging current can be set to 1.0A when above that voltage.

#### 4.2 Key Battery Charging Registers

This section provides some key registers that must be configured for battery charging to work correctly; it is not meant to provide all necessary information to properly charge a battery. For

additional information, please refer to the "Battery Charger Interface and Backup Battery" chapter of Texas Instruments' *TPS65950 OMAP Power Management and System Companion Device ES 1.0 TRM* (literature number SWCU050). This document is available for download from TI's website: <u>http://focus.ti.com/docs/prod/folders/print/tps65950.html#technicaldocuments</u>

| Register                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPBR1(MADC_HFCLK_EN<br>&<br>DEFAULT_MADC_CLK_EN) | Both MADC_HFCLK_EN and DEFAULT_MADC_CLK_EN should be set to<br>"1" after power on. Turning these bits on will enable the ADC to work properly,<br>which is necessary for the TPS65950 to monitor the battery voltage. If these<br>bits are not set, battery charging will not start. This should be one of the first<br>tasks the boot code performs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BCIMFTH1(VBATOV1TH)                              | VBATOV1TH sets the voltage threshold when the battery charger changes<br>modes from pre-charge to main charge. On a fully depleted battery (voltage<br>less than 3.2V) the charger will enter pre-charge mode until the battery<br>voltage reaches 3.2V. Once at 3.2V, the charger turns off while the system<br>boots. If the battery drops below VBATOV1TH during the time from when the<br>boot starts until the GPBR1 register (above) is set, the charger will return to<br>pre-charge mode and limit the charging current to only 100mA. Changing<br>VBATOV1TH to a lower value can help with this situation. This should also be<br>one of the first tasks the boot code performs. The VBATOV1TH setting is<br>dependent upon the battery used in the system and should be verified on<br>individual designs. |
| BCIIREF1 & BCIIREF2                              | BCIIREF1 and BCIIREF2 set the main charging current. This is just one of many locations the charging current can be set. Please reference TI's <i>TPS65950 TRM</i> for alternate methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BCIMFTH9(HSVOLTTH)                               | HSVOLTTH defines the heat-save voltage threshold. Please refer to the<br>"Heat-Save Detection" section of TI's <i>TPS65950 TRM</i> for information on<br>enabling heat-save.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BCIMFTH9(HSCURTH)                                | HSCURTH defines the heat-save current threshold. Please refer to the "Heat-Save Detection" section of TI's <i>TPS65950 TRM</i> for information on enabling heat-save.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## 5 External Battery Charging

If the TPS65950 does not provide an adequate solution for your battery charging requirements, TI features other power management devices that can be incorporated in a baseboard design to provide battery charging external to the OMAP35x SOM-LV.

The BQ24074 USB-friendly Li-Ion battery charger and power-path management IC is one such device. Refer to the datasheet on the following TI product page for additional information: <u>http://focus.ti.com/docs/prod/folders/print/bq24074.html</u>.

### 6 Reference Voltages

Several voltages come off the high-density connectors for use as reference voltages. While the intent of these voltages is strictly as a reference level, some of the supplies may be connected on custom baseboards to supply low-current devices. In the table below the recommended maximum current is stated for each reference voltage.

**IMPORTANT NOTE:** These values are only suggestions. Please verify supply voltage current limits of the TPS65950 in custom designs.

| Reference Voltage | Usage                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| VSIM              | Connected to VIO_1V8 through a 0 ohm resistor; follow VIO_1V8 recommendations.                                                                           |
| VIO_1V8           | Used to power most peripherals on the SOM. Not recommended to power devices off-<br>board. Only use to determine the voltage for a particular interface. |

| Reference Voltage | Usage                                                                        |
|-------------------|------------------------------------------------------------------------------|
|                   | Can supply up to 200 mA off-board. Requires capacitance on the baseboard for |
| VAUX3             | stabilization; recommend 1uF or larger.                                      |
| VMMC1             | Can supply up to 200 mA off-board.                                           |
| VMMC2             | Can supply up to 100 mA off-board.                                           |
| VPLL2             | Can supply up to 35 mA off-board.                                            |

### 7 Power Supplies

#### 7.1 VAUX4

VAUX4 is disabled by default on the TPS65950. If using one of the camera GPI signals, this supply must be turned on by software. There are two key registers for setting and enabling the VAUX4 voltage. Details can be found in TI's *TPS65950 TRM* referenced above (see Section 4.2).

| Register                                                                                                | Description                                                                  |  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| VAUX4_DEDICATED                                                                                         | This register controls the voltage for VAUX4, and must be configured first.  |  |
| VAUX4_DEV_GRP                                                                                           | This register controls when VAUX4 is enabled, and must be configured second. |  |
| <b>NOTE:</b> The voltage range for this power supply is 1.71V to 1.89V. Operation outside this range is |                                                                              |  |
| not recommended.                                                                                        |                                                                              |  |

#### 7.2 Sample Script to Enable VAUX4

A sample LogicLoader script for enabling VAUX4 is provided below. Please see Appendix A at the end of this document for the I2C losh script referenced below.

losh> add=0x4b #0x4b is the address inside the TPS65950 for the PM\_RECEIVER module. losh> reg=0x81 #0x81 is the VAUX4\_DEDICATED register losh> dat=0x05 #Set voltage to 1.8V losh> source i2cwrite.losh losh> reg=0x7e #0x7e is the VAUX\_DEV\_GRP register losh> dat=0xe0 #Set VAUX4 to all device groups. Causes VAUX4 to turn on losh> source i2cwrite.losh

### 8 Summary

There are several different powering options for the OMAP35x SOM-LV using either a DC supply or battery. This document has provided a high-level perspective of the different power supplies available for custom applications.

### **Appendix A: Sample Scripts**

#### I2C Write Script

The following is the i2cwrite.losh script referenced in Section 7 above.

#TPS95650 is attached to I2C1 #I2C1 base address is 0x48070000 #Bitrate is 2.6 MHz #High speed mode # Write to an I2C register # \$add is source I2C address # \$reg is the internal register address # \$dat = Data to write w /h 0x48070014 0x0047 #I2C\_BUF Clear the TXFIFO w /h 0x48070014 0x0047 #I2C\_BUF Clear the slave address \$add w /h 0x48070024 \$add #I2C\_SA Write the slave address \$add w /h 0x48070024 \$add #I2C\_CNT Length of 2 = one byte address, one byte data #Don't wait for busy bits to go away w /h 0x48070024 0x9601 #I2C\_CON Enable port, High Speed, Master, TRX, STT sleep 5 # Wait on I2C SYS reset done x /h 0x48070024 0x9602 #I2C\_CON Enable port, High speed, Master, TRX, STP x /h 0x48070024 0x9602 #I2C\_CON Enable port, High speed, Master, TRX, STP x /h 0x48070024 0x9602 #I2C\_CON Enable port, High speed, Master, TRX, STP x /h 0x48070026 0x9602 #I2C\_CON Enable port, High speed, Master, TRX, STP x /h 0x48070016 #I2C\_STAT See bit 14 or bit 4 set here, 0x5500 is 0k # Blat the transmit bytes, don't worry about FIFO space w /b 0x4807001c \$dat #I2C\_DATA \$dat = data to write sleep 5 #Pause after transmission w /h 0x48070028 0x5110 #I2C\_CON Disable I2C port #Pause between transmissions

exit

#End of script