
PN 1020203H Logic PD, Inc. All Rights Reserved. i

DM37x Linux BSP User Guide
BSP Documentation

Logic PD // Products

Published: July 2011

Last revised: December 2016

This document contains valuable proprietary and confidential information and the attached file contains source code, ideas,
and techniques that are owned by Logic PD, Inc. (collectively “Logic PD’s Proprietary Information”). Logic PD’s Proprietary
Information may not be used by or disclosed to any third party except under written license from Logic PD, Inc.

Logic PD, Inc. makes no representation or warranties of any nature or kind regarding Logic PD’s Proprietary Information or
any products offered by Logic PD, Inc. Logic PD’s Proprietary Information is disclosed herein pursuant and subject to the
terms and conditions of a duly executed license or agreement to purchase or lease equipment. The only warranties made
by Logic PD, Inc., if any, with respect to any products described in this document are set forth in such license or
agreement. Logic PD, Inc. shall have no liability of any kind, express or implied, arising out of the use of the Information in
this document, including direct, indirect, special or consequential damages.

Logic PD, Inc. may have patents, patent applications, trademarks, copyrights, trade secrets, or other intellectual property
rights pertaining to Logic PD’s Proprietary Information and products described in this document (collectively “Logic PD’s
Intellectual Property”). Except as expressly provided in any written license or agreement from Logic PD, Inc., this
document and the information contained therein does not create any license to Logic PD’s Intellectual Property.

The Information contained herein is subject to change without notice. Revisions may be issued regarding changes and/or
additions.

© Copyright 2016, Logic PD, Inc. All Rights Reserved.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. ii

Revision History

REV EDITOR DESCRIPTION APPROVAL DATE

A EN, SO -Initial Release JCA 07/28/11

B EN, RAH

-Throughout: Added references to DM3730 Torpedo + Wireless
SOM; Updated commands for BSP version 2.0; Reorganized flow
of information;
-Added Section 1.8;
-Added Section 2.1
-Section 2.3.1.3: Corrected alternate command script included in
notes section to install LWP: UserAgent package;
-Added Section 1.1;
-Removed Section 3.13.4 – 3.13.6: Combined information into
Section 3.2.10 and updated; Changed kernel parameters;
-Added Section 3.2;
-Section 4.7.3: Updated backlight commands;
-Section 0: Changed references of mtdblock3 to mtdblock4
throughout;
-Added Section 4.13
-Section 4.17: Removed references to musbd images, as only
standard sample images are provided;
-Section 4.17.2: Corrected mount point to /mnt/mmcblk0p1.
-Section 4.18 - 4.24: Additional peripheral information added:
UARTs, I2C, SPI, Real Time Clock, ADCs, and Run/Idle/Suspend
mode;
-Added Section 4.28; EN, DH 03/29/12

C EN

-Section 1.5: Updated to clarify different development path
options;
-Section 2.4: Added image.elf file as one available after
completion of build;
-Added Section 2.5.5.1;
-Added Section 2.7;
-Section 3.2: Updated link to U-Boot command manual;
-Added Section 3.2.6;
-Section 3.2.10.4: Added note regarding the use of nand write
and nand write.i;
-Added Section 3.2.11;
-Added Section 4.30;
-Added Section 7;
-Added Section 8;
-Added Section 9;
-Added references to README-setup within tar ball to obtain the
latest information regarding the tar ball EN, BSB 05/18/12

D EN, SO

-Added Section: 1.2, 1.3, and 1.5;
-Section 1.8: Added link to DM37x Linux SD Card Demo ReadMe;
-Added Section 1.9;
-Section 2: Added description of tasks performed by LTIB;
-Section 2.2.1: Added additional information on patch files, patch
command, etc.;
-Section 2.3.1: Added note that following section only provides
an example set of tasks; added note about script that can
automate steps in the section;
-Section 2.3.1.3: Updated initial command to sudo su; added
note that sudo su command may be required;
-Section 2.4: Added note to ignore error message prompted by
GNOME bug;
-Added Section 2.4.1, 2.4.2, 2.5.6, and 2.5.7;
-Section 2.7.3: Updated name of directory where CodeSourcery
is installed;
-Section 3: Removed NoLo as possible second-stage bootloader;
removed LogicLoader as possible third-stage bootloader; added
requirement that second and third-stage bootloaders must be
stored in the same location;
-Section 3.2: Removed I2C reads and writes from list of U-Boot
tasks;
-Section 3.2.3: Added note that U-Boot commands may differ
based on version;
-Section 3.2.5: Changed set command to setenv;
-Section 3.2.6: Added note to Step 3 that memory space can be RAH, SO 11/21/12

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. iii

reused or discarded as soon as bitmap shows on the display;
-Section 3.2.7: Changed set command to setenv throughout;
-Section 3.2.10: Added note about possible need for different
ECC algorithm depending on hardware configuration;
-Section 3.2.10.4: Added reference to a script that can automate
tasks described in the section; added note to Step 6 about need
to use version-specific RAM disk image size; updated ECC type in
Step 8;
-Section 3.2.10.5: Added reference to a script that can automate
tasks described in the section; added Step 3 to erase NAND
flash; updated ECC type in Step 8;
-Added Section 4.5.1.1;
-Section 4.5.1.2: Added reminder to have Ethernet cable
connected when booting; added note about how to save
configuration changes across power cycles;
-Section 0: Added reminder that quotation marks are required
around field strings when using the amixer command;
-Section 0: Added note that mounting location is arbitrary;
-Section 4.11.1: Updated commands to erase flash partitions;
-Section 4.12: Added note that section is only relevant to kernel
version 2.6.x;
-Section 4.13: Added note that section is only relevant to kernel
version 3.x;
-Added Section 4.13.1.1;
-Section 4.17.2: Updated commands in Step 2 and Step 3;
-Added Section 4.26;
-Section 4.27: Added note about importance of using proper
commands to shut down the development kit;
-Section 4.30: Reorganized for clarity;
-Added Section 6.2;
-Section 8: Added instructions for camera use; added
prerequisite that default build configuration must be completed
before proceeding;
-Section 8.1: Added Steps 44.b through 44.j; added note that
YAFFS image type is required; added note about package
dependencies;
-Added Section 8.3 and 10

E BSB, SO

-Throughout: Corrected dashes in commands to hyphens;
updated template; updated links for new support site;
-Section 2.5.1: Added command for X-Loader;
-Added Section 2.5.4 about creating cross-compilation shell;
-Added Section 2.5.7 about reviewing selected packages;
-Section 3.2: Updated for new default display 28;
-Section 3.2.2.1: Added vertical front porch (vfp) to display
environment variables;
-Section 3.2.9: Added reference to DM3730/AM3703 U-Boot Labs
document;
-Section 3.2.14: Added instructions to convert DocBook XML file
to HTML file;
-Added Section 4.2 about how to retrieve BSP version
information;
-Added Section 4.3 about how to display product ID system
information;
-Added Section 4.4 about how to display Linux system
information;
-Added Section 0 about how to display text messages;
-Added Section 4.15 about using the USB controller;
-Added Section 4.23 about the BQ27000 gas gauge;
-Added Section 4.29 about adding CPU bookmarks;
-Added Section 4.30 about using peekpoke command;
-Added Section 4.31 about useful filesystem commands;
-Added Section 10.3 about reporting problems RAH, PB, SO 10/11/13

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. iv

F BSB

-Added Section 3.2.11 regarding booting with X-Loader, U-Boot,
the kernel, and root filesystem on an SD card;
-Added Section 3.2.14 regarding how to move the debug console
from UARTA to UARTB;
-Section 4.7.3: Updated to include instructions about how to
handle the console backlight blanking;
Added Section 4.32 about booting the kernel from a TFTP server
and booting the root filesystem from an NFS server;
-Section 4.8: Added audio record, alsamixer and audio path
information
-Section 8.1: Added note to avoid setting C6x_C_DIR;
-Added Section 10.3 regarding removing drivers;
-Added Section 11 regarding basic driver/kernel debugging SO, AF, AM

08/26/14

G BSB, AF

-Updated Section 2.4 Build
-Added Section 2.7.1.1 Using mkLogicFATcard.sh to create an
SD Card with a RAM Disk Image
-Added 2.7.1.2 Using mkLogicFATcard.sh to create an SD Card
with a YAFFS rootfs for NAND
-Added Section 2.8 CodeSourcery 2011.09 Compiler
-Added Section 3.2.7 Printing Text to the Display
-Updated section 8.3.3 to change recommended USB mini-B plug
to USB mini-A plug.
-Added Section 3.2.7 Printing Text to the Display
-Updated Section 4.2 Retrieve BSP Version
-Updated Section 4.8 Audio
-Updated Section 4.13 Wireless Networking with Linux 3.x
Kernels
-Added Section 4.13.3 Start Wireless Interface in Multi-Role
-Added Section 4.13.4 Setting Regulatory Domains Using the
CRDA (Central Regulatory Domain Agent)
-Added Section 4.24 Smart Reflex
-Updated Section 6.2.3 Run GPS Demo Application
-Updated Section 8 Cameras and DSP (DVSDK)
-Updated Section 8.1 Prepare Build Tools
-Updated Section 8.3.3 USB Webcam Example
-Added Section 13 Appendix A: Enable MCS0 and MCS7 JMC, BSB, AF 8/28/15

H AF, BSB

-Updated Section 3.2.2 Configure Boot
-Updated Section 3.2.2.1: Add info on how to disable video
-Added Section 3.2.12 Boot with Read-Only Root File system
-Updated Section 4.11.2 Mount NOR Flash using JFFS2
-Added Section 4.11.3 Mount NAND Flash using YFFS2
-Added section 4.32 Using Linux Voltage and Current Regulator
Framework
-Added section 4.33 Reading Temperature Sensor
-Delete the contents of section 4.12 and replace it with a note
indicating that Kernel 2.6x support is no longer supported and
users should upgrade to 3.0 kernels. AF, CT 12/09/2016

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. v

Table of Contents

1 Introduction .. 1
1.1 Nomenclature ... 1
1.2 Development Resources... 1
1.3 The BSP Design .. 1
1.4 Prerequisites .. 2
1.5 Precautionary Statement ... 2
1.6 Paths to Linux Platform Development .. 2
1.7 Timesys Partnership .. 3
1.8 Recreating DM37x Linux Demo SD Card ... 3
1.9 Additional Information ... 3

2 Build Source .. 4
2.1 Virtual Machine ... 4
2.2 Obtain Build Environment and Source .. 5

2.2.1 Patches .. 5
2.3 Prepare Host PC .. 6

2.3.1 Required Host PC Packages .. 6
2.4 Build ... 8

2.4.1 Files Available after Build ... 8
2.4.2 Place Final Images on SOM ... 9

2.5 Common LTIB Commands .. 9
2.5.1 Source Code for Specific Packages ... 9
2.5.2 Build Changes and Create Output Files ... 9
2.5.3 Reset to Fresh Build Environment .. 9
2.5.4 Create Cross-Compilation Shell ... 9
2.5.5 Configure BSP .. 10
2.5.6 The .config File .. 14
2.5.7 Review Selected Packages ... 15

2.6 Review BSP Configuration without LTIB Installed ... 15
2.7 Other Tools ... 15

2.7.1 LTIB /bin Directory ... 15
2.7.2 /opt/ltib/usr/bin Directory ... 16
2.7.3 /opt/CodeSourcery Directory ... 16

2.8 CodeSourcery 2011.09 Compiler .. 16
3 Boot Configuration .. 18

3.1 Boot Sequence .. 18
3.2 U-Boot.. 18

3.2.1 Get Started ... 19
3.2.2 Configure Boot ... 19
3.2.3 U-Boot help Command .. 22
3.2.4 U-Boot Environment ... 23
3.2.5 Shell Variables ... 24
3.2.6 Display Splash Screen ... 25
3.2.7 Printing Text to the Display ... 26
3.2.8 Script with Variables ... 26
3.2.9 Script from Memory .. 28
3.2.10 Boot from NAND Flash .. 28
3.2.11 Boot with X-Loader, U-Boot, Kernel, and Root Filesystem on SD Card 37
3.2.12 Boot with Read-Only Root File system ... 38
3.2.13 Useful Scripts .. 40
3.2.14 Debug UART .. 41

4 Kernel .. 44
4.1 vi Editor .. 44
4.2 Retrieve BSP Version .. 45
4.3 Display Product ID System Information .. 45
4.4 Display Linux System Information .. 45
4.5 Wired Networking .. 46

4.5.1 Assign Development Kit IP Address .. 46

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. vi

4.5.2 Set Speed, Duplex, and Auto-Negotiate .. 48
4.5.3 Test Network ... 49

4.6 Linux Processes ... 49
4.6.1 ps Command ... 49
4.6.2 kill Command ... 50

4.7 Video Display .. 51
4.7.1 Draw Test ... 51
4.7.2 DirectFB .. 51
4.7.3 Backlight ... 52
4.7.4 Display Message ... 53

4.8 Audio ... 53
4.9 External Memory Interface .. 55
4.10 Touch Screen .. 55
4.11 Built-in Flash Storage via MTD ... 55

4.11.1 Erase Flash Partitions .. 56
4.11.2 Mount NOR Flash using JFFS2 .. 56
4.11.3 Mount NAND Flash using YFFS2 .. 57

4.12 Wireless Networking with Linux 2.6x Kernels ... 57
4.13 Wireless Networking with Linux 3.x Kernels ... 57

4.13.1 Start Wireless Interface in Station Mode .. 57
4.13.2 Start Wireless Interface in AP Mode .. 58
4.13.3 Start Wireless Interface in Multi-Role .. 60
4.13.4 Setting Regulatory Domains Using the CRDA (Central Regulatory Domain Agent) 61

4.14 Bluetooth ... 61
4.14.1 Start or Stop Bluetooth Interface ... 62
4.14.2 Assign Hardware Name ... 63
4.14.3 View Bluetooth Device Configuration ... 63
4.14.4 Modify Bluetooth Device Configuration .. 63
4.14.5 Scan for Bluetooth Devices .. 63
4.14.6 Query Bluetooth Device ... 63

4.15 USB Controller ... 63
4.16 USB Host Controller ... 64
4.17 Processor OTG Controller .. 64

4.17.1 Use MUSB in Host Mode .. 64
4.17.2 Use MUSB in Device Mode ... 64

4.18 UART .. 65
4.19 I2C .. 66
4.20 SPI .. 66
4.21 Real Time Clock ... 66
4.22 Analog-to-digital Converters .. 67
4.23 BQ27000 Gas Gauge Support .. 68
4.24 Smart Reflex ... 69
4.25 Run/Idle/Suspend .. 70
4.26 Virtual Files ... 70

4.26.1 echo Command and ">" Operator ... 70
4.26.2 /sys/kernel/debug Directory .. 71

4.27 Shut Down Linux System .. 72
4.28 Additional Peripheral Test Information .. 72
4.29 CPU Benchmarks ... 72
4.30 Use Peekpoke to Examine/Modify Registers ... 75
4.31 Filesystem Commands .. 75

4.31.1 df Command .. 75
4.31.2 cat /proc/mtd Command ... 76
4.31.3 flash_eraseall Command ... 76
4.31.4 badblocks Command ... 76

4.32 Using Linux Voltage and Current Regulator Framework ... 76
4.33 Reading Temperature Sensor .. 78

5 Boot Kernel from TFTP Server and Root Filesystem from NFS Server 79
5.1 Set Up TFTP Server in Ubuntu 12.04 .. 79
5.2 Setup NFS Server in Ubuntu 12.04 ... 80

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. vii

5.3 Set Up the DM3730/AM3703 Target Platform .. 81
6 Application Development ... 83

6.1 "Hello World” Application Example ... 83
6.1.1 Build “Hello World” Application ... 83
6.1.2 Transfer “Hello World” Application to Root Filesystem ... 83
6.1.3 Run “Hello World” Application .. 84

6.2 GPS Demo Application Example ... 85
6.2.1 Build GPS Demo Application ... 85
6.2.2 Transfer GPS Demo Application to Target .. 85
6.2.3 Run GPS Demo Application .. 85

6.3 Debug with GNU Debugger.. 87
6.3.1 Configure Build Options ... 87
6.3.2 Set Up GDB ... 87

7 Loadable Module Development .. 90
7.1 “Hello World” Module .. 90

7.1.1 Build “Hello World” Module .. 90
7.1.2 Run “Hello World” Module .. 90

8 Cameras and DSP (DVSDK) ... 92
8.1 Prepare Build Tools .. 92
8.2 Run Time Configuration .. 98
8.3 Example DSP and Camera Use... 99

8.3.1 DSP Example ... 99
8.3.2 Parallel Camera Example ... 100
8.3.3 USB Webcam Example .. 102

9 GTK Demo.. 104
9.1 Prepare Build Tools .. 104
9.2 Build .. 104
9.3 Run Demo ... 104

10 Customize LTIB ... 106
10.1 Definitions .. 106
10.2 Integrate New Package ... 106

10.2.1 Integrate New Service .. 107
10.2.2 Build ... 109
10.2.3 Installing ... 109
10.2.4 Test .. 109
10.2.5 Configure .. 109

10.3 Removing Drivers .. 110
10.3.1 General Instructions ... 110
10.3.2 Remove Specific Interfaces .. 112

11 Basic Driver/Kernel Debugging Information ... 115
11.1 dmesg .. 115
11.2 Dynamic Debug ... 115
11.3 Enable Specific Debug Message ... 116
11.4 Debug Modules .. 117

12 Reporting Problems ... 118
13 Appendix A: Enable MCS0 and MCS7 .. 119

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 1

1 Introduction

This user guide provides information pertaining to Logic PD’s DM37x Linux Board Support

Package (BSP). This BSP is compatible with the DM3730/AM3703 SOM-LV,

DM3730/AM3703 Torpedo SOM, and DM3730/AM3703 Torpedo + Wireless SOM platforms.

1.1 Nomenclature

Within this document, use of “DM3730 Development Kit” suggests text that applies to both the

DM3730 SOM-LV Development Kit and DM3730 Torpedo SOM Development Kit; information

specific to one development kit will call out the precise name.

1.2 Development Resources

This document does not attempt to provide information about all commands and all features

available in Linux, U-Boot, LTIB, or any other utilities included in the BSP. The purpose of this

document is to provide information to a developer on how to get started doing development

with this BSP. This document will also provide information regarding any custom code that

Logic PD has implemented for the BSP. Linux, U-Boot, LTIB, and all the utilities used in the

BSP are open source. The open source community has a wealth of information available to

assist developers. If you need additional information beyond what is provided in this

document, please consider these sources:

■ The source code included in the BSP: No other information source is more detailed or

more accurate than the source code that is actually being built. The source code is,

however, extensive and impossible to navigate without a text search utility. Most

modern source code editors all have multi-file search features.

■ Web pages: Use your favorite search engine to find articles on the open-source

component you are working with.

■ Forums: If you have questions about an open-source component, others have

probably had the same questions. By searching available forums, you are likely to not

only find answers, but to also find people who have resolved the same task you are

working on.

■ Logic PD Support: Logic PD provides many free resources that are included with your

development kit, once it is registered online, to help with your development process.

Please visit the Logic PD Support web page1 for additional information about the

offerings available to you.

■ Logic PD Design Services Support: For customers requiring continued support with

development, Logic PD offers standard and configurable support contract options.

Logic PD has a design services division that is not only experienced with the Linux

BSP, but also in mechanical engineering, software engineering, hardware engineering,

and manufacturing engineering. Please visit the Logic PD Support Packages web page2

for additional information.

1.3 The BSP Design

Logic PD constantly reviews the latest Linux kernels to identify versions that support features

required by our customers and chooses the kernels that are most stable. When a kernel

version is chosen, a BSP is then built around it. Logic PD is always balancing the need to have

1 http://www.logicpd.com/support/
2 http://www.logicpd.com/support/support-packages/

http://www.logicpd.com/support/
http://www.logicpd.com/support/support-packages/
http://www.logicpd.com/support/
http://www.logicpd.com/support/support-packages/

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 2

the latest Linux kernel with the need for high stability. When those two ideas do not align,

Logic PD will opt for the kernel with the greatest stability.

1.4 Prerequisites

■ Zoom DM3730 Development Kit registered on Logic PD’s website3

□ Registration is required to gain access to your product’s download page where the

BSP can be downloaded.

■ Host PC

■ Internet connection

1.5 Precautionary Statement

Caution should be observed when cutting and pasting commands from this document to the

Linux prompt. Word or PDF documents may convert the simple hyphen-minus character (hex

code 0x2d, uni code \055) into the en dash character (hex code 2013, uni code

\342\200\223). Visually, it is difficult to distinguish between the two characters, and the

applications being passed these unexpected arguments may simply ignore them.

1.6 Paths to Linux Platform Development

In most cases, customers require an additional driver or other modification to the existing BSP

to support hardware on their product. The source for the Linux BSP is provided in its entirety

so that customers can add to or modify any part of it as needed to meet their customization

needs.

Logic PD provides four different ways to modify and build the Linux BSP:

1. Build the latest BSP source using your preferred build tool. The DM37x Linux BSP

download is available on Logic PD’s website (see Section 2 for a link) and includes all

source code for X-Loader, U-Boot, the Linux kernel, and the Linux Target Image

Builder (LTIB) build tool. See the README-setup file within the tar ball for the specific

location of the source. This option allows you to work in a familiar build environment,

although Logic PD may not be able to provide assistance for build issues. Please see

Section 2.2 for additional information on how to download the source. See Section

2.5.7 regarding BSP configuration.

2. Build the latest BSP using the Logic PD-recommended build tool. The DM37x Linux BSP

download is available on Logic PD’s website (see Section 2 for a link) and includes all

source code for X-Loader, U-Boot, the Linux kernel, and the LTIB build tool. This

option provides the fastest build time, but requires some setup on the host PC. Please

see Section 2.3 for additional information on how to configure your Linux PC.

3. Build the latest BSP through a pre-configured build environment with source using a

virtual machine (VM). The Virtual Machine SDK for the DM37x Linux BSP is available

on Logic PD’s website (see Section 2.1 for a link) and is configured to use VirtualBox

as the VM manager. The VM includes source for X-Loader, U-Boot, the Linux kernel,

the LTIB build tool, and a pre-configured Ubuntu operating system (OS). This option is

the simplest way to get started building on nearly any OS. Because building occurs on

a VM, the build is slightly slower than building on a native Linux-based PC. Please see

Section 2.1 for additional information on how to build using a VM.

3 http://support.logicpd.com/TechnicalSupport/RegisterProduct.aspx

http://support.logicpd.com/TechnicalSupport/RegisterProduct.aspx
http://support.logicpd.com/TechnicalSupport/RegisterProduct.aspx

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 3

4. Download the latest BSP from the Timesys website. This includes source for X-Loader,

U-Boot, the Linux kernel, and the Timesys build tools. This option provides the most

versatile set of tools and optional Timesys support. Please see Section 1.7 for

additional information about how to get started using the Linux Timesys tools.

Any of the methods noted above can be used to update, build, and debug the Linux BSP,

although each method has different requirements. Please post a question to the Logic PD

Technical Discussion Group (TDG) forum4 if you need help deciding which build method is right

for you.

1.7 Timesys Partnership

Logic PD is very pleased to be partnered with Timesys. Logic PD supplies Timesys with our

Linux BSP and works with them to integrate it into their excellent tools (LinuxLink and

Factory). Logic PD and Timesys work together to ensure that the BSP and related Linux

environment stays current and that mutual customers get the best support possible. In many

cases, Logic PD customers can access a free trial of the Timesys tools. Please contact your

Timesys or Logic PD sales person for additional information. Also, see the dedicated

Timesys/Logic PD landing page.5

1.8 Recreating DM37x Linux Demo SD Card

For information on how to recreate the DM37x Linux Demo SD card included in the

DM3730 Development Kit, please see the DM37x Linux SD Card Demo Image download.6 The

download includes the necessary software files. The DM37x Linux SD Card Demo Image

ReadMe7 provides instructions for completing the process.

1.9 Additional Information

There are several files in the DM37x Linux BSP download that will have additional information.

Some of these documents are supplied by the build tool in the doc folder. Other README files

are in the root of the BSP and contain the very latest version-specific information for the BSP.

■ The doc folder in the BSP: This folder is provided by the LTIB build tool. There are

several files here that contain a wealth of information about LTIB and how to use it. In

particular, note the doc/LtibFaq file that contains a full description of all command line

arguments supported by LTIB.

■ README: LTIB introduction.

■ README-setup: Location of source files and a full description of how to set up LTIB on

a PC.

■ README-LTIB-shortcuts: LTIB quick reference information.

■ RELEASE_INFO: Release version information; this file is generated after the first build

is complete.

4 http://support.logicpd.com/TDGForum.aspx
5 http://www.timesys.com/supported/boards/logic
6 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1405
7 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1409

http://support.logicpd.com/TDGForum.aspx
http://www.timesys.com/supported/boards/logic
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1405
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1409
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1409
http://support.logicpd.com/TDGForum.aspx
http://www.timesys.com/supported/boards/logic
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1405
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1409

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 4

2 Build Source

This section describes how to build X-Loader, U-Boot, the kernel, and the RAM-based Linux

root filesystem using LTIB. The Linux image provided in Logic PD’s DM37x Linux BSP

download8 consists of a single .tar.bz2 file that contains X-Loader source, U-Boot source,

kernel source, and LTIB.

Internally, Logic PD develops its Linux BSP and systems using an LTIB-based environment.

LTIB is an open-source tool used to develop and deploy BSPs for various target platforms. See

the LTIB website9 for more information. LTIB preforms the following tasks:

■ Installs the cross compiler. The cross compiler, runs on a desktop PC to compile code

for the target SOM.

■ Manages package dependencies. A typical Linux build consists of more than just the

Linux OS. Most often the features users employ to interact with Linux are handled by

some kind of package. The list of packages is vast, and a typical Linux image may

contain nearly 100 packages. Some packages used in the DM37x Linux BSP are:

□ Bash

□ Dropbear

□ GDB

□ DirectFB

□ ALSA-utils

□ BlueZ

□ Samba

□ Many others are included, and many others can be added.

■ Builds the Linux OS from source. LTIB will use the included cross compiler to build the

Linux OS image. This is one of the first images loaded when the SOM boots.

■ Builds/includes all the configured packages. LTIB can be configured to add or remove

a long list of included packages. Each package can have binaries and/or source. LTIB

will manage building and linking all the source and binaries of every package.

■ Applies patches. At times a change is required for a package or the kernel. These

changes may be included as a patch. LTIB will apply any necessary patches to the

build. You may also add your own patches.

■ Creates a root filesystem. The Linux OS requires some form of root filesystem. The

root filesystem will contain all the packages, utilities, and applications the user will use

to interact with the system. LTIB will create an image of the root filesystem that users

can install on their hardware.

■ Aids in development. LTIB allows the user to build the system image or portions of it.

Often when doing development, a full OS build is not necessary and can be time

consuming. LTIB allows the developer to extract, modify, build, and deploy any single

package.

For customers who do not wish to use LTIB, please see Section 2.2.

2.1 Virtual Machine

For customers who wish to build the source with the least amount of effort, Logic PD now

provides a VM that is fully configured with the Ubuntu OS, LTIB, build tools, and source. The

8 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=853
9 http://www.ltib.org

http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=853
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=853
http://www.ltib.org/
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=853
http://www.ltib.org/

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 5

Virtual Machine SDK for the DM37x Linux BSP10 has all building capabilities on the host PC as

described in Section 2.4 below. The VM also provides a means for building the BSP on a host

PC not equipped with Linux. The VM is configured to use VirtualBox as the VM manager. See

the Virtual Machine SDK for the DM37x Linux BSP ReadMe11 for installation instructions.

If you choose to use the VM, building occurs just like building on a native host. See Section

2.4 to continue building the BSP.

2.2 Obtain Build Environment and Source

Begin by downloading the DM37x Linux BSP tar ball to your Linux machine from the Logic PD

website (see Section 2 for a link). Once downloaded, choose a directory to which you would

like to extract the tar ball. Use the following command to extract the tar ball, where filename

is the filename of the downloaded tar ball.

tar xvjf filename.tar.bz2

Be sure to review each of the README files within the tar ball for the latest information on the

DM37x Linux BSP. The examples in this section are examples only and may not provide the

most up-to-date information for your release.

For those customers who are familiar with Linux and wish to use a build tool other than LTIB,

the source code within the .tar.bz2 file can be used with some other Linux build packages. See

the README-setup file within the tar ball to see where the source files are located. Building

the provided source with a build tool other than LTIB, however, is beyond the scope of this

document.

2.2.1 Patches

A patch file is simply a delta between two text files that is created by running the Linux diff

command. The output of the command is then saved as a patch file that can be used when a

developer wishes to document only the changes made (since the patch file itself is a human

readable text-based file). It can also be used when a developer wishes to disseminate a small

file in place of the entire updated code base. Use the diff - -help command in Linux for more

information.

Applying the patch is achieved using the Linux patch command. The patch command will read

the differences listed in the patch file and update the lesser (older) file to be the same as the

newer file where the diff was created. Use the patch - -help command in Linux for more

information.

Logic PD will, at times, release patches to the original BSP. Those patches can be found in the

DM37x Linux BSP tar ball LPD-IP-package-pool/ directory. Typically patches Logic PD provides

to the original BSP source will be named using the following format:

 <source><version>-BSP-<BSP version>-<patch name>.patch

The <source> will often be X-Loader, U-Boot, or Linux. The <version> will be the version for

the indicated source. The <BSP version> is the BSP version of the patch. The <patch name>

is the name of the patch. For example, the environment patch for U-Boot BSP 1.0 is:

 u-boot-2009.11-BSP-1.0-environment.patch

10 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=858
11 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1401

http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=858
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1401
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=858
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1401

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 6

When a patch file is included in the package spec file, LTIB will automatically apply the patch

upon building, prepping, or deploying the package. See Section 10.2 for additional information

about creating a spec file.

2.3 Prepare Host PC

LTIB is designed to be executed on a Linux host PC. The following steps should work for any

Linux distribution; however, Logic PD can only confirm operation with the OS version indicated

in the README-setup file included in the DM37x Linux BSP tar ball. Please note that the

operations included below are examples only; see the README-setup file for the latest

information regarding your version of the BSP and for additional information on using LTIB.

It is assumed that the user has properly configured the /etc/sudoers file. If not, please refer to

"Section 1" of the README-setup file for information on configuring the /etc/sudoers file.

The tar ball now includes a script that can be run to install all the needed packages

automatically. Please refer to the README-setup for more information about using the script in

lieu of the manual package installation steps listed in this section.

2.3.1 Required Host PC Packages

The following packages are generally needed by LTIB and some of the standard components

that Logic PD releases. Every attempt has been made to make the list as complete as possible.

Depending on how your host PC has been configured, some of the packages may already be

installed. If that is the case, you should be able to safely ignore them. Conversely, your host

PC may require additional packages not included below. In order to determine if this is the

case, please review any LTIB build logs to identify errors. By reviewing the programs that

failed to build and identifying how they failed, you can ascertain which package your host PC is

missing.

NOTE: The information presented below provides an example set of tasks needed to set up

LTIB. For a complete detailed list of tasks for your specific version of the DM37x Linux BSP,

see the README-setup file in the tar ball.

NOTE: Newer versions of the BSP now include a script named ltib_setup.sh. This script can be

run in lieu of the steps below to automate your system setup. Run the script by issuing the

commands below in the LTIB directory. Be sure to replace <your LTIB directory> with the

location where you extracted the DM37x Linux BSP tar ball in Section 2.2.

bash$ cd <your LTIB directory>

bash$./ltib_setup.sh

Once the script is run, follow the prompts.

2.3.1.1 Switch to Bash Instead of Dash

At the Linux command prompt, enter the following command:

bash$ ls -l /bin/sh

lrwxrwxrwx 1 root root 4 2011-01-05 01:54 /bin/sh -> bash

If you see /bin/sh -> dash instead of /bin/sh -> bash, then execute the following command:

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 7

bash$ sudo dpkg-reconfigure dash

When prompted if you want dash as /bin/sh, select NO.

2.3.1.2 Install Packages

LTIB and the build tools require several packages on your host PC. The following list is an

example of how to install the packages with example commands to install them. Please see

the README-setup file in the downloaded DM37x Linux BSP tar ball for the latest list of

packages and any additional information needed to install your specific BSP version.

bash$ sudo apt-get install build-essential

bash$ sudo apt-get install nfs-kernel-server

bash$ sudo apt-get install nfs-common

bash$ sudo apt-get install portmap

bash$ sudo apt-get install tftpd-hpa

bash$ sudo apt-get install tftp

bash$ sudo apt-get install rpm

bash$ sudo apt-get install wget

bash$ sudo apt-get install bison

bash$ sudo apt-get install flex

bash$ sudo apt-get install ’zlib*’

bash$ sudo apt-get install libncurses5

bash$ sudo apt-get install libncurses5-dev

bash$ sudo apt-get install libjpeg-dev

bash$ sudo apt-get install libx11-dev

bash$ sudo apt-get install xutils-dev

bash$ sudo apt-get install tcl

bash$ sudo apt-get install gettext

bash$ sudo apt-get install uuid-dev

bash$ sudo apt-get install libxext-dev

bash$ sudo apt-get install libtool

For 64-bit host PCs, run the following command in addition to those noted above:

bash$ sudo apt-get install ia32-libs

2.3.1.3 Perl Packages

Perl needs the LWP:UserAgent package. To install this, become root and enter a CPAN shell.

bash$ sudo sh

bash# perl -MCPAN -eshell

cpan[1]> install LWP::UserAgent

cpan[2]> exit

bash# exit

bash$ whoami

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 8

Verify that your user name is printed and that you are no longer root.

NOTE: The LWP:UserAgent package can also be installed via sudo apt-get install libwww-perl

rather than perl -MCPAN -eshell, although either should work.

NOTE: In some Linux distributions, the sudo su command may be required in place of su

<root password>, as indicated in the example above.

2.4 Build

The build is performed the same way, whether it is being built on a VM or the native host. The

VM comes complete with the source tar ball already expanded. However, you may opt to

download the latest tar ball from the Logic PD support site.12 The same tar ball available there

can be used on the native host or the VM.

NOTE: When using LTIB, disregard the "error: failed to stat /home/<user name>/.gvfs:

Permission denied" message. It is a message from the GNOME Virtual File System (GVFS) and

is a known bug in GNOME. See this GVFS wiki article13 and this DENX wiki article14 for

additional information.

With the tar ball expanded on your host PC and all the necessary packages installed (see the

previous sections for requirements), the build can be started from within the expanded

directory with the following command:

bash$./ltib -b --preconfig config/platform/omap_logic/defconfig

The initial build may take as long as twenty minutes on a 3.4 GHz Intel I7 quad with 16 GB of

RAM. It may take more or less time, depending on the performance of your host PC. During

the initial build, all the source code is expanded and all files are built. Successive builds will be

much faster.

NOTE: If configured the kernel to use the omap3logic_defconfig-performance on the Torpedo

+ Wireless, MCS0 and MCS7 may not be available for Wifi operation. See Appendix A on how

to enable MCS0 and MCS7 with omap3logic_defconfig-performance on the Torpedo + Wireless.

2.4.1 Files Available after Build

Upon completion of the build, the following files should be available:

■ rootfs.ext2.gz.uboot – RAM-based root filesystem for loading from U-Boot

■ rootfs/boot/u-boot.bin – U-Boot for use on SD/MMC

■ rootfs/boot/u-boot.bin.ift – U-Boot for use on NAND flash

■ rootfs/boot/uImage – Kernel image

■ rootfs/boot/MLO – X-Loader

NOTE: If the build is configured for a NAND-based YAFFS filesystem, the rootfs.yaffs2 file will

be produced instead of rootfs.ext2.gz.uboot. See Section 2.5.5.1 for more information.

12 http://support.logicpd.com/Home.aspx
13 https://bugs.launchpad.net/gvfs/+bug/225361
14 http://www.denx.de/wiki/DULG/ELDKGvfsPermissionDenied

http://support.logicpd.com/Home.aspx
https://bugs.launchpad.net/gvfs/+bug/225361
http://www.denx.de/wiki/DULG/ELDKGvfsPermissionDenied
http://support.logicpd.com/Home.aspx
https://bugs.launchpad.net/gvfs/+bug/225361
http://www.denx.de/wiki/DULG/ELDKGvfsPermissionDenied

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 9

2.4.2 Place Final Images on SOM

See mkLogicFATcard.sh in Section 2.7.1 for information on how to make a bootable SD card

and copy images.

See Section 3.2.13.1 for the makenandboot utility to place images in raw NAND flash.

See section 3.2.13.2 for the makeyaffsboot utility to place images in a YAFFS filesystem on

NAND flash.

2.5 Common LTIB Commands

2.5.1 Source Code for Specific Packages

These commands will extract the source of the package, apply any patches, and place it in

rpm/BUILD. From here, the source can be modified as needed. Below are some examples.

bash$./ltib -p kernel -m prep

bash$./ltib -p x-loader -m prep

bash$./ltib -p u-boot -m prep

bash$./ltib -p spi-test -m prep

bash$./ltib -p draw-test -m prep

2.5.2 Build Changes and Create Output Files

Once you have modified the source code to your needs, you can use this command to compile

it and deploy the appropriate files.

bash$./ltib -p kernel -m scbuild && ./ltib -p kernel -m scdeploy

2.5.3 Reset to Fresh Build Environment

This command will reset the LTIB environment to the default.

bash$./ltib -b -m distclean

2.5.4 Create Cross-Compilation Shell

The command below will create a shell with an environment equivalent to the environment

used to build packages. This includes all the variables and spoofing necessary for cross-

compilation. It is useful when you want to make changes to a package source and build it

directly instead of using ./ltib.

bash$./ltib -m shell

Once the changes are verified to build correctly, exit this shell and build using ./ltib instead.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 10

2.5.5 Configure BSP

The drivers, packages, X-Loader, U-Boot, build tools, and the output binaries for the BSP are

configured with a file located in the LTIB source tree named config. This file is created the first

time LTIB builds the source.

After your first build, the config file can be customized using a menu system started with the

command below.

bash$./ltib -c

This config menu system is modeled after the existing Linux kernel configuration system. If

you wish to make changes specific to the kernel, you can get to the kernel configuration

system by selecting "Configure the kernel" from within the LTIB menu system.

You can use the following command to pull up the kernel configuration system directly and

make your changes. LTIB will rebuild any packages dependent on the kernel (i.e., any that

create modules).

bash$./ltib -p kernel -c

2.5.5.1 Example: Create YAFFS Root Filesystem Image

Booting with a RAMdisk-based root filesystem provides a repeatable system start at every

boot. Since RAM is volatile, a RAM-based filesystem is lost and must be reloaded at every

boot. This results in the same root filesystem every time the system is restarted. However,

there may be cases in which you wish the root filesystem to exist in non-volatile memory so

that any changes to the root filesystem are retained across power cycles.

LTIB can be configured to produce a NAND flash-based root filesystem, which will be

non-volatile. To do this, start the LTIB menu configuration system and follow the steps below.

1. At the bash prompt, start the LTIB menu system.

bash$./ltib --c

2. Under the Target Image Generation menu heading, select Options.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 11

3. Under the Choose your root filesystem image type menu heading, choose Target

image.

4. Next, select yaffs2.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 12

5. Finally, save your changes by exiting each sub menu. Wait for LTIB to build your

images.

2.5.5.2 Example: Include GTK+ and Liberation Fonts Packages in Build

Additional configuration may be required to build and run GTK+ and the Liberation fonts. The

example below merely shows how to include packages in your build if they are not present by

default.

1. Start the LTIB menu system.

bash$./ltib -c

2. Select the Package List menu item to expand it.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 13

3. Add the GTK+ and Liberation fonts packages by pressing the Enter key to navigate

down the submenus. Press the Y key to select the item.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 14

4. Exit the LTIB menu by pressing the Esc key to navigate back up the submenus.

After you exit the LTIB menu, the system will build the added packages into your

newly created Linux image with GTK+ support.

2.5.6 The .config File

There may be cases where the developer doesn’t want to use the graphical configuration tool

(./ltib --c). In those cases, the text-based .config file contains the same configuration

information and can be viewed and/or edited with a text editor.

Furthermore, when using the graphical editor, you can highlight an option and choose “help”

at the bottom of the screen to display the config macro name and value used in the text-based

.config file. In this way, a developer can correlate items updated in the graphical interface with

items in the .config file. Note that when editing the .config file with a text editor, there is no

check performed to ensure the configuration combinations are correct.

Upon building the BSP for the first time, a command similar to the one below will cause LTIB

to create a file called .config. This file will contain first-level configuration information, such as

the platform of the first build and the location of the full configuration file.

bash$./ltib -b --preconfig config/platform/omap_logic/defconfig

The above build command indicates that the .config file in the LTIB root contains the

following:

CONFIG_PLATFORM_omap_logic=y

CONFIG_PLATFORM_DIR="config/platform/omap_logic"

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 15

Here, we see the full configuration file is located in config/platform/omap_logic/.config. The

file name in this location (.config) is implied.

When the default build command is used (see Section 2.4), the configuration file specified in

the build command is copied to a file named .config. Thereafter, any changes to the

configuration are maintained in the .config file.

2.5.7 Review Selected Packages

To list packages that are currently enabled, use the command below.

./ltib -m listpkgs | grep ' y '

2.6 Review BSP Configuration without LTIB Installed

There may be cases where a developer wants to know the default configuration of the BSP as

configured with LTIB. For example, a developer may not wish to use LTIB, but needs to

configure the preferred build tool. In these cases, the developer can look in the default

configuration file with a text editor for all the configuration information.

2.7 Other Tools

In addition to LTIB, there are other tools included in the BSP to help make the developers life

easier.

2.7.1 LTIB /bin Directory

The /bin directory in the LTIB install folder includes LTIB components and the

mkLogicFATcard.sh file, which is used to format an SD card suitable for SOM booting. Use this

file to partition, format, and copy boot files to your SD boot card. For additional information on

creating a bootable SD card, see the DM37x Linux SD Card Demo Image ReadMe15 for a step-

by-step process.

2.7.1.1 Using mkLogicFATcard.sh to create an SD Card with a RAM Disk Image

The mklogicFATcard.sh script with the ‘-c’ option will allow developers to format a SD Card and

copy the following files: MLO, u-boot.bin, uImage, and rootfs.ext2.gz.uboot to the sd card.

$./bin/mkLogicFATcard.sh -c [dev]

2.7.1.2 Using mkLogicFATcard.sh to create an SD Card with a YAFFS rootfs for NAND

The mklogicFATcard.sh script with the ‘-cy’ option will allow developers to format a SD Card

and copy the following files: MLO, u-boot.bin, uImage, and rootfs.yaffs to the sd card.

$./bin/mkLogicFATcard.sh -cy [dev]

15 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1409

http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1409
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1409

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 16

Note: Execute the mklogicFATcard.sh script from the LTIB root directory. In the command

lines above replace [dev] with the assigned device you’re your SD Card on your host PC. If no

[dev] is specified a list of available devices will be presented.

2.7.2 /opt/ltib/usr/bin Directory

When LTIB performs the first build, it installs the appropriate cross compiler and an

assortment of tools needed for building. The /opt/ltib/usr/bin directory has an assortment of

tools the developer may find handy. Information regarding most of the tools can be obtained

by adding --help as the first argument when running the tool. The list of tools is quite large, so

only a few key tools are noted in the list below.

■ mkfs.yaffs2 – A file used to create a YAFFS2 filesystem image. This image can be

loaded into NAND flash using U-Boot’s write.yaffs command.

■ ccache – A compiler cache used to cache files when compiling to speed recompilation.

■ bmp_logo – A tool to convert a BMP file to a header file. It is often used to link in a

default splash screen in U-Boot.

2.7.3 /opt/CodeSourcery Directory

The CodeSourcery cross compiler is used to build the source code. This is a GNU-based tool

set that includes a compiler, assembler, linker, debugger, and other standard GNU tools used

for development. When LTIB performs its first build, the CodeSourcery tool set is installed in

the directory /opt/CodeSourcery.

2.8 CodeSourcery 2011.09 Compiler

The default cross compiler is the CodeSourcery-2009q1-203 gcc-4.3.3. Customers can change

the default cross compiler in the LTIB menu to CodeSourcery-2011-09-70 gcc 4.6.1 as seen in

the Figure 1.

Figure 1: Compiler Options

Starting with release 2.3-0, the BSP added the newer compiler "CodeSourcery-2011.09-70

gcc-4.6.1 ARMv5te/glibc-2.13". This new compiler was found to be incompatible with packages

such as Qtopia and DVSDK. In those cases, the build will fail. Since the 2.4-4 release build

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 17

issues with Qtopia and DVSDK has been resolved. The new compiler employs additional

optimizations that produce faster, more efficient run-time code.

When changing between the 2009 to 2011 compilers in LTIB, build failures have been known

to occur. The "./ltib -m distclean" instruction has not been sufficient to clean the build for use

with a different compiler. The problem is some packages do not implement the "distclean", or

the "clean" stanzas or don't implement them very well (openssl, perl, ...).

Developers should remove the “rootfs” and “rpm” directories from within the LTIB folder prior

to changing the cross compiler and rebuilding. It will clear out any build data from the

previous compile, making building with the new compiler succeed.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 18

3 Boot Configuration

Linux can be configured to boot in an infinite number of ways. This section attempts to

describe the boot process and some common boot configurations.

3.1 Boot Sequence

Booting occurs in three stages.

1. The first-stage bootloader is an application that runs inside the Central Processing Unit

(CPU). When a reset occurs or power is first turned on, the boot ROM inside the

processor identifies the environment state and launches the second-stage bootloader.

The boot ROM has different requirements for each boot source. For example, when

booting from an SD card, the boot ROM mandates a specific partition, filesystem, and

file name for the second-stage bootloader. When booting from NAND flash, the boot

ROM mandates the second-stage bootloader be located in the first four blocks of NAND

flash and use a 1-bit hamming ECC algorithm. For other boot ROM requirements, see

the reference manual for your processor.

2. The second-stage bootloader is X-Loader. It must be located in non-volatile storage or

on an external link (e.g., UART, USB). The second-stage bootloader is loaded into the

CPU SRAM and run from there. This bootloader then starts the SDRAM and loads the

third-stage bootloader to SDRAM. The SDRAM is not usable until the second-stage

bootloader configures and starts it.

3. The third-stage bootloader is U-Boot. It usually has a simple runtime user interface for

debugging the SOM, loading the kernel, and writing flash memory. The third-stage

bootloader tends to be configurable with splash screens and scripts to customize the

boot sequence. This bootloader loads the filesystem, and loads and starts the kernel.

4. Finally, the Linux kernel is started.

There is a choice where the second and third-stage bootloaders are stored, as long as they are

both stored in the same location (e.g., SD card, NAND). The first-stage bootloader is always

on the same substrate as the CPU. For the remainder of this document, we will focus on

SD card and NAND locations. For additional information on loading the bootloader from other

locations such as USB, UART, eMMC, please post a question to the Logic PD TDG forum.

3.2 U-Boot

The intent of this section is to familiarize users with the most frequently used commands of

the U-Boot shell. Logic PD provides all U-Boot source code to kit users so that detailed

understanding and modification can be made with the source. A complete U-Boot manual can

be found on the DENX website.16

Under normal circumstances when U-Boot runs, it waits a few seconds for keyboard input; if

none is received, U-Boot proceeds to load and launch the Linux kernel. If, however, a key

press is detected, U-Boot will start a shell and wait for further input from the user.

U-Boot has many capabilities for performing simple debug and maintenance tasks, including:

■ Reading and writing RAM and flash devices

■ Loading images using TFTP, SD/MMC, NFS, YAFFS, and UART

■ Displaying splash screens on the display

16 http://www.denx.de/wiki/DULG/Manual

http://support.logicpd.com/TDGForum.aspx
http://www.denx.de/
http://www.denx.de/wiki/DULG/Manual

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 19

■ Reading and writing SD/MMC

■ Accessing a YAFFS NAND flash filesystem

■ Performing scripting tasks

■ Configuring a Linux kernel

3.2.1 Get Started

When using U-Boot, it is important to remember the following:

■ U-Boot will check NAND flash for environment variables at startup. This can sometimes

produce confusing results when developers switch from booting from NAND flash to

booting from an SD card. When booting from any source, U-Boot checks NAND flash

for the environment state and uses it if found.

■ U-Boot shell variables contain values, as well as a list of commands that can be run as

a script.

■ Linux requires the following to launch:

□ Loading the kernel image (uImage) to RAM.

□ Loading the RAM-based filesystem to RAM, if using a RAM-based filesystem.

□ Setting up the bootargs environment variable for Linux. If using a network-based

filesystem, that information needs to be included in the bootargs variable.

■ If using the LCD, the LCD must be specified in the bootargs variable to be made

available to Linux.

■ At boot, U-Boot looks for a file on the SD card named boot.scr. If found, U-Boot will

run that script using the autoboot environment variable script. The autoboot script is

included as part of the default environment variables coded into the U-Boot source

code. See include/configs/omap3logic.h in the U-Boot source code for more

information.

3.2.2 Configure Boot

The demo binary images provided by Logic PD are to be used to boot from an SD card. Logic

PD has provided some scripts in the default environment to help simplify the process of

configuring the boot setup.

To configure your boot strategy, there are four environment variables that must be set:

■ $kernel_location – This specifies the kernel image (uImage) device. Valid values are

ram, nand, mmc, or tftp.

■ $rootfs_location – This specifies the root filesystem device. Valid values are ram, tftp,

/dev, nfs, mmc, or nand.

■ $rootfs_type – This sets the type of root filesystem used. Valid values are ramdisk,

jffs, yaffs, ext3, or nfs.

■ $loadaddr – This configures the location in RAM that the kernel must be loaded to for

launch. The default value is 0x81000000.

Additional settings are required for setting specific boot strategies:

■ If booting from a /dev-based file location, then $rootfs_device must also be set with

the device used. The device is specified using the Linux filesystem path

/dev/mtdblock5.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 20

■ If booting from a RAMdisk image, then $ramdisksize and $ramdiskaddr must also be

set.

■ If booting from an NFS filesystem, then $serverip, $nfsrootpath, and $nfsoptions must

be set where the parameters for $nfsoptions are comma delaminated (e.g.,

wsize=1500, rsize=1500).

There are additional settings that can be used, not all of which will be documented here. A

detailed list of those environment variable settings can be found in the U-Boot source code in

include/configs/omap3logic.h. A short list of several of those settings is included below.

■ $display - This variable stores the display configuration used. The default value is 28,

identifying the display included with the DM3730 Development Kit.

■ $ramdiskimage – This is the file name of the RAMdisk image. The default value is

rootfs.ext2.gz.uboot.

■ $kernelimage – This is the file name of the Linux kernel image (uImage).

■ $serverip – This is the default IP address used for TFTP operations.

■ $setconsole – This variable stores the console device settings. The default value is

console ttyO0, 115200n8.

■ $otherbootargs – This variable has a set of static boot arguments that are passed to

the kernel. The default value is ignore_loglevel early_printk no_console_suspend.

3.2.2.1 Configure Display

At boot time, if the display environment variable has not been set, U-Boot will display the

following message:

================================== NOTICE =============================

The U-Boot environment was not found. If the display is not set

properly Linux will not have video support.

Valid display options are:

 2 == LQ121S1DG31 TFT SVGA (12.1) Sharp

 3 == LQ036Q1DA01 TFT QVGA (3.6) Sharp w/ASIC

 5 == LQ064D343 TFT VGA (6.4) Sharp

 7 == LQ10D368 TFT VGA (10.4) Sharp

 15 == LQ043T1DG01 TFT WQVGA (4.3) Sharp

 28 == LQ043T1DG28 TFT WQVGA (4.3) Sharp (DEFAULT) vga[-16 OR -

24] LCD VGA 640x480

 svga[-16 OR -24] LCD SVGA 800x600

 xga[-16 OR -24] LCD XGA 1024x768

 720p[-16 OR -24] LCD 720P 1280x720

 sxga[-16 OR -24] LCD SXGA 1280x1024

 uxga[-16 OR -24] LCD UXGA 1600x1200

Default `display` environment variable is now being set to: 28

At the U-Boot prompt type commands: `setenv display <num>`, then type

`saveenv` to save the environment to NAND flash. This will avoid

seeing this notice on future boots

================================== NOTICE =============================

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 21

To set a different display or to simply avoid this boot-time message, assign the display of your

choice to the $display environment variable. The default display is 28. If using a Logic PD

display, choose the number from the list above. If using a DVI adaptor on the LCD bus, choose

one of the VESA display names followed by -16. If using the HDMI connector on the

baseboard, select the VESA display name followed by -24.

The -16 and -24 set the number of bits per pixel. The LCD bus is 16 bits wide; as such, any

device plugged into this bus (LCD or DVI adaptor) must be set to -16. HDMI by definition is

24 bits per pixel; therefore, setting the display to -24 is required. In order to configure the

proper display, it is up to the user to know which display is connected and what the display

capabilities are.

NOTE: Be sure to check your kit for the necessary jumper settings. On the DM3730 Torpedo

Development Kit, JP2 must be moved when selecting the LCD parallel bus or HDMI. On the

DM3730 SOM-LV Development Kit, JP5 must be moved when selecting LCD parallel bus or

HDMI.

U-Boot does support custom displays. To configure a custom display, the $display

environment variable must be set to:

display=<xres>:<yres>:<hbp>:<hfp>:<vbp>:<vfp>:<hsw>:<vsw>:<pixel_clock>:

<config>:<data-lines>

Where:

■ xres is the number of pixels in the x direction

■ yres is the number of pixels in the y direction

■ hbp is the horizontal back porch

■ hfp is the horizontal front porch

■ vbp is the vertical back porch

■ vfp is the vertical front porch

■ hsw is the horizontal synchronization pulse width

■ vsw is the vertical synchronization pulse width

■ pixel_clock is the bit clock

■ config is the DISPC_POL_FREQ register of the DSS controller

■ data-lines is the number of bits per pixel

As an example, XGA timing in HDMI output (24 data lines) would be:

 display=1024:768:160:24:29:3:41:6:61714:0x100000:24

It is beyond the scope of this document to describe how to configure a custom display, beyond

the parameters available in U-Boot. For additional information about configuring custom

displays, please post a question to the Logic PD TDG forum.

Once the display has been set in U-Boot, that same display configuration will be passed to the

kernel in the $bootargs variable. No further configuration of the Linux kernel is necessary.

NOTE: For users who do not wish to have a display, removing the display environmental

variable will not initialize the screen and the driver will not initialize the frame buffer. Remove

the environmental variable by setting without any parameters.

OMAP Logic # setenv display

http://support.logicpd.com/TDGForum.aspx

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 22

3.2.3 U-Boot help Command

U-Boot supports the help command. At the U-Boot prompt, typing help will display all the

U-Boot commands and a brief description of each command. In addition, typing

help <command> provides a more detailed description of a specific command and its usage.

NOTE: Depending on the U-Boot version being used, the list of commands may differ from the

example shown below.

OMAP Logic # help

? - alias for 'help'

askenv - get environment variables from stdin

base - print or set address offset

bdinfo - print Board Info structure

bmp - manipulate BMP image data

boot - boot default, i.e., run 'bootcmd'

bootd - boot default, i.e., run 'bootcmd'

bootm - boot application image from memory

bootp - boot image via network using BOOTP/TFTP protocol

chpart - change active partition

cls - clear screen

cmp - memory compare

coninfo - print console devices and information

cp - memory copy

crc32 - checksum calculation

dhcp - boot image via network using DHCP/TFTP protocol

dump_gpmc - dump_gpmc - dump GPMC settings

dump_id_data- dump_id_data - dump product ID data

echo - echo args to console

echo_lcd - echo args to LCD

editenv - edit environment variable

env - environment handling commands

exit - exit script

ext2load - load binary file from a Ext2 filesystem

ext2ls - list files in a directory (default /)

fatinfo - print information about filesystem

fatload - load binary file from a dos filesystem

fatls - list files in a directory (default /)

fsinfo - print information about filesystems

fsload - load binary file from a filesystem image

go - start application at address 'addr'

help - print online help

i2c - I2C sub-system

imxtract - extract a part of a multi-image

itest - return true/false on integer compare

lcd_percent - format for percentage output on LCD

loadb - load binary file over serial line (kermit mode)

loads - load S-Record file over serial line

loady - load binary file over serial line (ymodem mode)

loop - infinite loop on address range

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 23

ls - list files in a directory (default /)

madc - MADC subsytem

md - memory display

mm - memory modify (auto-incrementing address)

mmc - MMC sub-system

mtdparts - define flash/nand partitions

mtest - simple RAM read/write test

mux_config - mux_config - dump active mux registers

mw - memory write (fill)

nand - NAND sub-system

nandecc - switch OMAP3 NAND ECC calculation algorithm

nboot - boot from NAND device

nfs - boot image via network using NFS protocol

nm - memory modify (constant address)

ping - send ICMP ECHO_REQUEST to network host

poweroff - Power down board

printenv - print environment variables

rarpboot - boot image via network using RARP/TFTP protocol

reset - Perform RESET of the CPU

run - run commands in an environment variable

saveenv - save environment variables to persistent storage

sdram_config - sdram_config - dump SDRC registers

setenv - set environment variables

showvar - print local hushshell variables

sleep - delay execution for some time

source - run script from memory

test - minimal test like /bin/sh

tftpboot - boot image via network using TFTP protocol

time - time execution of command

usb - USB sub-system

usbboot - boot from USB device

version - print monitor version

ydebug - YAFFS debug level

ydf - YAFFS disk free

ydump - YAFFS device struct

yls - yaffs ls

ymkdir - YAFFS mkdir

ymount - YAFFS mount

ymv - YAFFS mv

yrdm - YAFFS read file to memory

yrm - YAFFS rm

yrmdir - YAFFS rmdir

yumount - YAFFS unmount

ywrm - YAFFS write file from memory

OMAP Logic #

3.2.4 U-Boot Environment

The U-Boot environment consists of all variables in the shell. The shell variables can contain

numbers, strings, or a sequence of commands. Shell variables can be defined in the U-Boot

source code, at the shell prompt, or loaded from NAND flash at boot time.

To display the U-Boot environment, use the printenv command. NOTE: Your output may be

different than that shown below.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 24

OMAP Logic # printenv

bootcmd=echo 'Catalyst boot command ...';run autoboot

bootdelay=3

baudrate=115200

bootfile=uImage

lcd_anchor=30,0

disablecharging no

loadaddr=0x81000000

nandkerneloffset=0x280000

nandkernelsize=0x360000

scriptaddr=0x80FFB000

yupdatepart=cache

To save the environment to NAND so that the variables are available on the next boot, use the

saveenv command.

OMAP Logic # saveenv

Saving Environment to NAND...

Erasing Nand...

Erasing at 0x260000 -- 100% complete.

Writing to Nand... done

To reset the environment to the default, use the env default command.

OMAP Logic # env default -f

NOTE: When booting a different version of U-Boot, consider resetting the environment to the

default and then saving the default environment. Different versions of U-Boot and different

OSs often have different environment requirements, making different U-Boot environments

incompatible. The U-Boot environment, whether booting from SD or NAND, is always loaded

from NAND flash. So having the wrong environment in NAND flash can make SD booting from

a different version of U-Boot fail.

3.2.5 Shell Variables

Shell variables can be used as a means to configure inherent U-Boot operation, such as the

defaultecc variable, or to change NAND flash.

To set a variable at the shell, use the setenv command.

OMAP Logic # setenv foo 5

OMAP Logic # echo $foo

5

In the above example, the echo command and the "$" character are used to display the

content of a variable, where $ indicates that the content of the specified variable foo should be

used, rather than the word foo itself.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 25

3.2.6 Display Splash Screen

When the power is first turned on, a user requires some feedback to acknowledge that

something is happening with the system. To address this, it is a common desire to provide a

splash screen on the display as soon as possible while the system boots. This section will

provide an example on how to display a splash screen.

The splash screen should be formatted as a bitmap (.bmp) file and should match the screen

type being used. In this example, we use the 4.3” display that is included with the DM3730

Development Kit. This display has 480 x 272 pixels with 16 bits per pixel. Each pixel is 5 bits

for red, 6 bits for green, and 5 bits for blue (5:6:5 format). Many popular image editors can be

used to create, edit, and convert images to provide this format. When writing this example,

we used GIMP17 to convert an image to 480 x 272 pixels. Using the advanced options, we then

saved the image in bitmap format to 16 bits per pixel and R5 G6 B5 with the name

mysplash.bmp.

1. Copy this file to an SD card. Boot the SOM to U-Boot and use the command below to

initialize the SD/MMC card.

OMAP Logic # mmc init 1

mmc1 is available

2. List the directory of the SD card to ensure the splash screen file is present.

OMAP Logic # fatls mmc 1

 44772 mlo

 427320 u-boot.bin

 3954200 uimage

 14534102 rootfs.ext2.gz.uboot

 42100608 rootfs.yaffs2

 .trash-1000/

 427332 u-boot.bin.ift

 261190 mysplash.bmp

7 file(s), 1 dir(s)

3. Next, load the splash screen to memory.

OMAP Logic # fatload mmc 1 0x81000000 mysplash.bmp

reading mysplash.bmp

261190 bytes read

The address 0x81000000 is the destination in RAM where the splash image will be

stored. This address is somewhat arbitrary as long as the memory space is a valid

memory space and does not impede on the U-Boot memory space. The U-Boot

command bdinfo will display all the memory information needed to choose an address.

Once the display shows the bitmap, this memory space can be reused or discarded.

4. Display the bitmap header information to verify the bitmap is loaded properly and has

the proper format for U-Boot.

17 http://www.gimp.org/

http://www.gimp.org/
http://www.gimp.org/

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 26

OMAP Logic # bmp info 0x81000000

Image size : 480 x 272

Bits per pixel: 16

Compression : 3

5. Verify the LCD backlight is turned off, display the bitmap, and then turn the LCD

backlight on to 100%.

OMAP Logic # backlight 0

OMAP Logic # bmp display 0x81000000

OMAP Logic # backlight 100

Commands similar to those above can be used to script the process of loading your own splash

screen when U-Boot starts up. See the following section for additional information on how to

write scripts.

3.2.7 Printing Text to the Display

U-boot provide the ability to show text messages on the display. Examples of printing text to

the display are provided below.

Here is an example that will put up text at the current position (and increment the cursor

position).

OMAP Logic # echo_lcd "This is a test"

The command below will go back to the beginning of the line and change "this" to "that".

OMAP Logic # echo_lcd "/rThat"

The command below will go back to the beginning of the line and clear it.

OMAP Logic # echo_lcd "/r/k"

Here is an example to display inverted text.

OMAP Logic # echo_lcd "/iIs it a test?/i"

3.2.8 Script with Variables

To script one or more U-Boot commands, the command list is assigned to a variable and the

U-Boot run command is used to execute that list of commands, as shown below.

OMAP Logic # setenv color blue

OMAP Logic # setenv car_color echo $color

OMAP Logic # echo $car_color

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 27

echo blue

In the above example, we created the variable color and set it to blue. We also created the

variable car_color and set it equal to $color. Notice when we display the variable $car_color, it

does not contain the same text we set it to. The reason is the parser used the value of $color,

rather than the literal string $color.

To correct this, we can use the back slash character "\" to delay the processing of the "$"

character.

OMAP Logic # setenv car_color echo \$color

OMAP Logic # echo $car_color

echo $color

Now, the variable car_color can be considered a simple script of one command. To run this

script, we use the run command.

OMAP Logic # run car_color

blue

OMAP Logic #

The "\" character is crucial to writing scripts due to the delayed processing of a script.

Processing of commands is delayed until script execution.

The next example shows how more than one command can be assigned to a variable. Multiple

commands can be separated on the command line or in scripts using the semicolon character

";". Notice in the example below, we need to continue our use of the "\" to prevent the ";" and

the "$" from being processed when we assign our script to a variable.

OMAP Logic # setenv car_color blue

OMAP Logic # setenv print_car_color echo The color of my car is\; echo

\$car_color\; echo Done

OMAP Logic # echo $print_car_color

echo The color of my car is; echo $car_color; echo Done

OMAP Logic # run print_car_color

The color of my car is

blue

Done

OMAP Logic # setenv car_color red

OMAP Logic # run print_car_color

The color of my car is

red

Done

OMAP Logic #

In the above example, we created a shell variable car_color and assigned it a value of blue.

Next, we created a second shell variable print_car_color and assigned it a command list of

three echo commands to print the color of the car. Notice each command was separated by a

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 28

";" character. Also notice we used the "\" character to escape the special characters "$" and

";".

As with any other environment variable, our script can be saved in NAND flash for future use.

Using the saveenv command will save all the variables defined in our environment, including

our script(s). When the system is restarted, the environment is automatically reloaded, and

we can again run our script with the command run print_car_color.

For more complex scripting, script variables can be defined that call other script variables

using the same run command our example used above.

3.2.9 Script from Memory

An alternative method to saving and running scripts in the environment is to save the script as

a separate file. This requires using the source command in the U-Boot shell and the mkimage

tool included with the U-Boot source. The result of the mkimage tool is a file that can be

loaded into RAM at the U-Boot prompt; the source command can then be used from the

U-Boot shell to launch the script. For more details, please see the source command in the

U-Boot manual available on the DENX website.18 Information about how to create the boot.scr

script can be found in Lab 9 of the DM3730/AM3703 U-Boot Labs.19

At boot time, the default environment includes a script that will search the SD card (if present)

for a script file named boot.scr. If a file is found on the SD card with that file name, U-Boot

will load that file into RAM and the source command is used to run it. This can be handy in

cases where you want to override any boot strategy in NAND flash by simply booting from an

SD card including this script file.

3.2.10 Boot from NAND Flash

When booting from NAND flash, the same X-Loader, U-Boot, and kernel images used in

booting from an SD card are used.

NOTE: The references to the ECC algorithms in the following sections depend on the NAND

device, the processor, and the NAND filesystem. If this hardware configuration differs from the

one used in the writing of this document, a different ECC algorithm may be required. The

U-Boot environment variable defaultecc will contain the default ECC algorithm used by U-Boot.

3.2.10.1 X-Loader

The CPU boot ROM expects to find X-Loader in one of the first four blocks of NAND flash. The

reason for the four copies is that NAND flash is subject to bad blocks. If the CPU fails to load

X-Loader in the first block, it will proceed to the next block and try again.

The CPU boot ROM also mandates a specific ECC algorithm be used when loading X-Loader. In

the context of the U-Boot shell, this is the hw ECC algorithm.

3.2.10.2 U-Boot

X-Loader expects to find U-Boot starting from the fifth block of raw NAND flash. It also

expects that U-Boot will use the chip ECC algorithm in the context of the U-Boot shell. Rather

than having multiple copies of U-Boot to manage bad block situations in NAND flash, X-Loader

will detect and skip any bad block it finds. So, if a bad block is encountered as X-Loader loads

U-Boot, X-Loader will simply look to the next block for the remainder of U-Boot. For this

reason, only one copy of U-Boot is required.

18 http://www.denx.de
19 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1413

http://www.denx.de/
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1413
http://www.denx.de/
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1413

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 29

3.2.10.3 Kernel

Once U-Boot is up and running, the rest of the boot process becomes much more flexible.

U-Boot provides methods for reading from SD, YAFFS (filesystem based in NAND flash), TFTP,

raw NAND flash, and other MTD devices. In addition, U-Boot is typically where the

programming of a SOM’s non-volatile memory (flash memory) takes place.

3.2.10.4 RAMdisk NAND Flash Boot Example

To program a bootable NAND flash, the following example uses U-Boot to do the

programming. The example will assume a RAM-based filesystem and that X-Loader, U-Boot,

and the kernel image are all stored in raw NAND flash. This example uses the binary images

from Logic PD’s DM37x Linux BSP and all of the commands below are performed in U-Boot.

See Section 3.2.13.1 for a script that performs the same task.

NOTE: U-Boot and the environment are constantly undergoing improvement; the example

below shows only one method. See the scripts in Section 3.2.11 for the latest implementation.

NOTE: In the following examples, you will see the use of the nand write and nand write.i

commands. The distinction is subtle, but significant. It is beyond the scope of this document to

describe all the workings of NAND flash; however, new and used NAND flash devices can have

bad blocks. The nand write command will write data to the NAND flash device, skipping NAND

flash bad blocks and the data that would be written to that block. The nand write.i command,

on the other hand, will also skip NAND bad blocks, but will continue to write the data to the

next good block. Therefore, nand write can result in data not written to the NAND flash device,

while nand write.i will write all data to the NAND flash device.

1. Power on the SOM and press any key to interrupt the boot cycle to get to the U-Boot

prompt.

2. Erase the NAND flash completely.

OMAP Logic # nand erase.chip

NAND erase.chip: device 0 whole chip

Erasing at 0x1ffe0000 -- 100% complete.

OK

3. Load the default environment.

OMAP Logic # env default -f

4. Set up the U-Boot environment variables to indicate where the kernel and the RAMdisk

should be loaded into RAM.

OMAP Logic # setenv loadaddr 0x81000000

OMAP Logic # setenv ramdiskaddr 0x82000000

5. Set the location and size of the kernel in NAND flash.

It is best to use the location in NAND flash that is consistent with the MTD partitions

defined in U-Boot and passed into the kernel. Using the mtdparts command at the

U-Boot prompt will display the NAND partitions defined. The value used for the

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 30

kernel_nand_size should be rounded up to the nearest NAND flash page size. The size

set can be larger, but should not be larger than the partition defined in mtdparts.

OMAP Logic # setenv kernel_nand_offset 0x00280000

OMAP Logic # setenv kernel_nand_size 0x00400000

6. Set similar offset and size parameters for the RAMdisk in NAND.

NOTE: The RAMdisk size may differ depending on which release you are using. Please

use the size of your specific RAMdisk image for the ramdisk_nand_size variable. As

with the kernel image, the ramdisk_nand_size should be rounded up to the nearest

NAND flash page size. The size can be larger, but should not be larger than the

partition defined in mtdparts.

OMAP Logic # setenv ramdisk_nand_offset 0x00680000

OMAP Logic # setenv ramdisk_nand_size 0x00dd8680

7. Specify where the kernel image is located, where the root filesystem is located, and

the type of root filesystem being used.

OMAP Logic # setenv kernel_location nand

OMAP Logic # setenv rootfs_location nand

OMAP Logic # setenv rootfs_type ramdisk

8. Save the U-Boot environment.

OMAP Logic # saveenv

Saving Environment to NAND...

Erasing Nand...

Erasing at 0x260000 -- 100% complete.

Writing to Nand... done

This concludes configuring U-Boot to boot from NAND flash. Follow the steps below to burn the

boot images into NAND.

1. Initialize the SD/MMC interface for reading. NOTE: This example assumes that all the

boot images are on an SD card that is inserted into the bootable SD card slot on the

baseboard.

OMAP Logic # mmc init

mmc1 is available

2. Use a temporary space in RAM to load the image. Out of convenience, we simply use

$loadaddr. Before loading our image, we cleared the RAM to all 0xFFs because NAND

flash forces the data to be aligned on page boundaries. Any extra bytes we write to

NAND flash should be the erase byte 0xFF.

OMAP Logic # mw.l ${loadaddr} 0xFFFFFFFF 0x400000

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 31

3. Load X-Loader (named MLO on our bootable SD card) to a temporary space in RAM.

OMAP Logic # fatload mmc 1 ${loadaddr} mlo

reading mlo

34388 bytes read

4. Before we burn X-Loader to NAND flash, we need to choose the hw ECC algorithm

U-Boot will use when writing to NAND flash.

OMAP Logic # nandecc hw

NAND: HW ECC selected

5. Now burn X-Loader to NAND flash. Remember that the boot ROM expects the

second-stage bootloader (X-Loader) to be in the first four blocks of NAND flash. So,

we burn the same copy of X-Loader to the first four blocks.

The burn size chosen here must be on a NAND flash page boundary. There is no harm

in burning the entire block of NAND flash and, to keep this example simple, we will

burn the entire block.

OMAP Logic # nand write ${loadaddr} 0x00000000 0x00020000

NAND write: device 0 offset 0x0, size 0x20000

 131072

OMAP Logic # nand write ${loadaddr} 0x00020000 0x00020000

NAND write: device 0 offset 0x20000, size 0x20000

 131072 bytes written: OK

OMAP Logic # nand write ${loadaddr} 0x00040000 0x00020000

NAND write: device 0 offset 0x40000, size 0x20000

 131072 bytes written: OK

OMAP Logic # nand write ${loadaddr} 0x00060000 0x00020000

NAND write: device 0 offset 0x60000, size 0x20000

 131072 bytes written: OK

X-Loader is now burned to NAND flash.

6. Next, prepare to burn U-Boot to NAND flash. Begin as we did in X-Loader by writing

0xFF to the temporary RAM space.

OMAP Logic # mw.l ${loadaddr} 0xFFFFFFFF 0x400000

7. Similar to what was done with X-Loader, load U-Boot to the temporary RAM space.

OMAP Logic # fatload mmc 1 ${loadaddr} u-boot.bin

reading u-boot.bin

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 32

439368 bytes read

8. For U-Boot and all remaining images, set the programming ECC algorithm to

${defaultecc}.

OMAP Logic # nandecc ${defaultecc}

NAND: Internal to NAND ECC selected

9. Write U-Boot to the fifth NAND flash block. As is the case with X-Loader, the burn size

must end on a page boundary and burning a few more bytes than what we need

causes no harm.

OMAP Logic # nand write.i ${loadaddr} 0x00080000 0x00080000

NAND write: device 0 offset 0x80000, size 0x80000

 524288 bytes written: OK

U-Boot is now burned into NAND flash.

10. Finally, burn the kernel and the root filesystem to NAND flash.

The process here is the same as above; however, for convenience we use the

environment variables $kernel_nand_offset, $kernel_nand_size,

$ramdisk_nand_offset, and $ramdisk_nand_size instead of specifying those

parameters explicitly.

OMAP Logic # mw.l ${loadaddr} 0xffffffff 0x400000

OMAP Logic # fatload mmc 1 ${loadaddr} ${kernelimage}

reading uImage

3937748 bytes read

OMAP Logic # nand write.i ${loadaddr} ${kernel_nand_offset}

${kernel_nand_size}

NAND write: device 0 offset 0x280000, size 0x400000

 4194304 bytes written: OK

OMAP Logic # mw.l ${loadaddr} 0xffffffff 0x400000

OMAP Logic # fatload mmc 1 ${loadaddr} ${ramdiskimage}

reading rootfs.ext2.gz.uboot

14500647 bytes read

OMAP Logic # nand write.i ${loadaddr} ${ramdisk_nand_offset}

${ramdisk_nand_size}

NAND write: device 0 offset 0x680000, size 0x00dd8680

 14517888 bytes written: OK

11. The process of creating bootable NAND flash is now complete. Remove the SD card

and cycle the power on the SOM; it will now boot from NAND flash.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 33

3.2.10.5 YAFFS Root Filesystem Boot Example

The boot process is very flexible. The example below boots to the Linux kernel from NAND

flash as did the previous example; however, rather than loading a RAMdisk root filesystem

image, this example uses an existing root filesystem located on a NAND flash partition. See

Section 3.2.13.2 for a script that performs a similar task.

1. Insert the DM37x Linux BSP Demo SD card and power on the SOM.

2. Let the SOM boot into the Linux kernel; enter the username and login as described in

the Linux banner.

3. Erase the NAND flash completely.

OMAP Logic # nand erase.chip

NAND erase.chip: device 0 whole chip

Erasing at 0x1ffe0000 -- 100% complete.

OK

4. At the Linux prompt, mount a YAFFS partition on the NAND device.

DM-37x# mkdir /mnt/yaffs-nand

DM-37x# mount -t yaffs /dev/mtdblock5 /mnt/yaffs-nand

5. Copy the RAM-based root filesystem to the new mount point.

DM-37x# cp -a /bin /dev /etc /home /lib /mnt/yaffs-nand

DM-37x# cp -a /linuxrc /opt /root /sbin /tmp /usr /var /mnt/yaffs-nand

DM-37x# mkdir /mnt/yaffs-nand/{mnt,proc,sys}

6. Unmount the NAND partition. This ensures the filesystem cache is flushed to the

device and a YAFFS checkpoint is created. A YAFFS checkpoint makes future mounts

much faster.

DM-37x# umount /mnt/yaffs-nand

7. With the demo SD card still inserted, power off the SOM.

8. Power on the SOM and press any key to interrupt the boot cycle to get to the U-Boot

prompt.

9. Erase the X-Loader, U-Boot, and kernel partitions.

OMAP Logic # nand erase.part x-loader

NAND erase.part: device 0 offset 0, size 0x80000

Erasing at 0x60000 - 100% complete.

OK

OMAP Logic # nand erase.part u-boot

NAND erase.part: device 0 offset 0x80000, size 0x1a0000

Erasing at 0x200000 – 100% complete.

OK

OMAP Logic # nand erase.part kernel

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 34

NAND erase.part: device 0 offset 280000, size 0x500000

Erasing at 0x760000 – 100% complete.

OK

10. Load the default environment.

OMAP Logic # env default -f

11. Set up the U-Boot environment variable to indicate where the kernel should be loaded

into RAM.

OMAP Logic # setenv loadaddr 0x81000000

12. Set the location and size of the kernel in NAND flash.

It is best to use the location in NAND flash that is consistent with the MTD partitions

defined in U-Boot and passed into the kernel. Entering the mtdparts command at the

U-Boot prompt will display the NAND partitions defined. The value used for the

kernel_nand_size should be rounded up to the nearest NAND flash page size. The size

set can be larger, but should not be larger than the partition defined in mtdparts.

OMAP Logic # setenv kernel_nand_offset 0x00280000

OMAP Logic # setenv kernel_nand_size 0x00400000

13. Specify where the kernel image is located, where the root filesystem is located, and

the type of root filesystem being used.

OMAP Logic # setenv kernel_location nand

OMAP Logic # setenv rootfs_location /dev

OMAP Logic # setenv rootfs_type yaffs

OMAP Logic # setenv rootfs_device /dev/mtdblock5

14. Save the U-Boot environment.

OMAP Logic # saveenv

Saving Environment to NAND...

Erasing Nand...

Erasing at 0x260000 -- 100% complete.

Writing to Nand... done

This concludes configuring U-Boot to boot from NAND flash. Follow the steps below to burn the

boot images into NAND.

1. Initialize the SD/MMC interface for reading. NOTE: This example assumes that all the

boot images are on an SD card that is inserted into the bootable SD card slot on the

baseboard.

OMAP Logic # mmc init

mmc1 is available

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 35

2. Use a temporary space in RAM to load the image. Out of convenience, we simply use

$loadaddr. Before loading our image, we clear the RAM to all 0xFFs because NAND

flash forces our data to be aligned on page boundaries. Any extra bytes we write to

NAND flash should be the erase byte 0xFF.

OMAP Logic # mw.l ${loadaddr} 0xFFFFFFFF 0x400000

3. Load X-Loader (named MLO on our bootable SD card) to a temporary space in RAM.

OMAP Logic # fatload mmc 1 ${loadaddr} mlo

reading mlo

34388 bytes read

4. Before we burn X-Loader to NAND flash, we need to choose the hw ECC algorithm

U-Boot will use when writing to NAND flash.

OMAP Logic # nandecc hw

NAND: HW ECC selected

5. Now burn X-Loader to NAND flash. Remember that the boot ROM expects the

second-stage bootloader (X-Loader) to be in the first four blocks of NAND flash. So,

we burn the same copy of X-Loader to the first four blocks.

The burn size chosen here must be on a NAND flash page boundary. There is no harm

in burning the entire block of NAND flash and, to keep this example simple, we will

burn the entire block.

OMAP Logic # nand write ${loadaddr} 0x00000000 0x00020000

NAND write: device 0 offset 0x0, size 0x20000

 131072

OMAP Logic # nand write ${loadaddr} 0x00020000 0x00020000

NAND write: device 0 offset 0x20000, size 0x20000

 131072 bytes written: OK

OMAP Logic # nand write ${loadaddr} 0x00040000 0x00020000

NAND write: device 0 offset 0x40000, size 0x20000

 131072 bytes written: OK

OMAP Logic # nand write ${loadaddr} 0x00060000 0x00020000

NAND write: device 0 offset 0x60000, size 0x20000

 131072 bytes written: OK

X-Loader is now burned to NAND flash.

6. Next, prepare to burn U-Boot to NAND flash. Begin as we did in X-Loader by writing

0xFF to the temporary RAM space.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 36

OMAP Logic # mw.l ${loadaddr} 0xFFFFFFFF 0x400000

7. Similar to what was done with X-Loader, load U-Boot to the temporary RAM space.

OMAP Logic # fatload mmc 1 ${loadaddr} u-boot.bin

reading u-boot.bin

439368 bytes read

8. For U-Boot and all remaining images, set the programming ECC algorithm to

${defaultecc}.

OMAP Logic # nandecc ${defaultecc}

NAND: Internal to NAND ECC selected

9. Write U-Boot to the fifth NAND flash block. As is the case with X-Loader, the burn size

must end on a page boundary and burning a few more bytes than what we need

causes no harm.

OMAP Logic # nand write.i ${loadaddr} 0x00080000 0x00080000

NAND write: device 0 offset 0x80000, size 0x80000

 524288 bytes written: OK

U-Boot is now burned into NAND flash.

10. Finally, burn the kernel to NAND flash.

The process here is the same as above; however, for convenience we use the

environment variables $kernel_nand_offset and $kernel_nand_size, instead of

specifying those parameters explicitly.

OMAP Logic # mw.l ${loadaddr} 0xffffffff 0x400000

OMAP Logic # fatload mmc 1 ${loadaddr} ${kernelimage}

reading uImage

3937748 bytes read

OMAP Logic # nand write.i ${loadaddr} ${kernel_nand_offset}

${kernel_nand_size}

NAND write: device 0 offset 0x280000, size 0x400000

 4194304 bytes written: OK

11. The process of creating bootable NAND flash is now complete. Remove the SD card

and cycle the power on the SOM; it will now boot from NAND flash.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 37

3.2.11 Boot with X-Loader, U-Boot, Kernel, and Root Filesystem on SD Card

The Linux Demo image has the X-loader, U-Boot, and kernel booting from the SD card with a

RAM-based root filesystem loaded into RAM. Any changes to the RAM-based root filesystem

are lost following a reset.

The example in this section provide a way to create a two partition SD card with a FAT

partition holding X-loader, U-Boot, and the kernel and an ext3 partition containing the root

filesystem. These instructions have been verified using the Virtual Machine SDK for the DM37x

Linux BSP v2.4-2.

A script is provided to simplify the steps required to create an SD card with root filesystem.

12. Download the create_sdcard script from here.20

13. Place the create_sdcard script into the LTIB root directory (i.e.,

~/logic/Logic_BSPs/Linux_3.0/REL-ltib-DM3730-2.4-2).

14. Give yourself permission to run the script.

bash$ chmod 777 create_sdcard.sh

15. Insert an SD card into your Linux host PC.

16. Run the script.

bash$./create_sdcard.sh

Devices available:

 sdb is 1.8GB - Card Reader

Enter device: sdb

Setting up sdb

Do you wish to continue? (y/N) y

Partitioning sdb.

[sudo] password for logic:

mke2fs 1.42 (29-Nov-2011)

Mounting bootloader partition

Mounting root partition

Flushing data to SD card

Unmounting bootloader partition

Unmounting root partition

17. After the script has completed, remove the SD card and insert it into your

DM3730/AM3703 SOM system.

18. Boot the system and press any key to pause at the U-Boot prompt

19. Update the following U-Boot variables.

OMAP Logic # nand erase.chip

OMAP Logic # env default -f

OMAP Logic # setenv rootfs_location /dev

OMAP Logic # setenv rootfs_type ext3

20 http://support.logicpd.com/Portals/0/Users/049/05/305/create_sdcard.zip

http://support.logicpd.com/Portals/0/Users/049/05/305/create_sdcard.zip
http://support.logicpd.com/Portals/0/Users/049/05/305/create_sdcard.zip

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 38

OMAP Logic # setenv rootfs_device /dev/mmcblk0p2

OMAP Logic # setenv kernel_location mmc

OMAP Logic # saveenv

OMAP Logic # reset

20. Verify your system root filesystem is running from /dev/mmcblk0p2.

DM-37x# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/root 1631756 203676 1345188 13% /

tmpfs 120400 52 120348 0% /dev

/dev/mmcblk0p2 1631756 203676 1345188 13% /mnt/mmcblk0p2

/dev/mmcblk0p1 307016 4384 302632 1% /mnt/mmcblk0p1

shm 120400 0 120400 0% /dev/shm

rwfs 512 0 512 0% /mnt/rwfs

DM-37x#

DM-37x# cat /proc/cmdline

nand-ecc=chip console=ttyO0,115200n8 display=28 ignore_loglevel

early_printk no_console_suspend mtdparts=omap2-nand.0:512k(x-

loader),1664k(u-boot),384k(u-boot-env),5m(kernel),20m(ramdisk),-(fs)

root=/dev/mmcblk0p2 rw rootfstype=ext3 rootwait DM-37x#

3.2.12 Boot with Read-Only Root File system

A read-only root file system can be desired when developers want to prevent possible

corruption to NAND flash devices due to unexpected system power down events. While YAFFS

file systems protects against sudden loss of power developers may also consider using a read-

only root file system to limit the number of writes to NAND memory has a limited number of

P/E cycles.

Read-only partitions also provide a more stable system. System behavior is easily

reproducible when a system is design using read-only root file systems.

Here are the steps for changing the default read/write partition to a read-open partitioning in

YAFFS.

1. Load LTIB configuration window

$./ltib -c

2. In the LTIB Configuration Menu select ‘Options --->’ under ‘Target Image Generation’

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 39

3. In the Option menu make the following changes.

 [*] read-only root filesystem

 (4M) tmpfs size

 (/tmp /etc /var) Place these dirs in writable RAM

4. Exit and save all changes to rebuild the Linux OS image.

5. Create a SD card using the following option from the LTIB root directory

$./bin/mkLogicFATcard.sh –cy

6. Move the newly created SD card to the embedded system.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 40

7. Power on the embedded system

8. Press any key to stop at the u-boot prompt

9. Program NAND memory with YAFFS partition

OMAP Logic # run makeyaffsboot

10. Update the u-boot environment variables using the following commands.

OMAP Logic # setenv otherbootargs no_console_suspend ignore_loglevel ro

OMAP Logic # setenv _set_rootfs_type_yaffs 'setenv bootargs ${bootargs} ro rootfstype=yaffs2'

OMAP Logic # saveenv

11. Boot the Linux kernel

OMAP Logic # boot

12. Verify the YAFFS2 partition is Read-Only. Any attempts to write to the root file system

should return a message indicating the file system is a Read-only. Any rights to the

RAM-based partitions are no persistence between resets.

DM-37x# mount

rootfs on / type rootfs (rw)

/dev/root on / type yaffs2 (ro,relatime)

proc on /proc type proc (rw,relatime)

sys on /sys type sysfs (rw,relatime)

tmpfs on /dev type tmpfs (rw,relatime,mode=755)

devpts on /dev/pts type devpts (rw,relatime,mode=600)

shm on /dev/shm type tmpfs (rw,relatime)

rwfs on /mnt/rwfs type tmpfs (rw,relatime,size=4096k)

rwfs on /tmp type tmpfs (rw,relatime,size=4096k)

rwfs on /etc type tmpfs (rw,relatime,size=4096k)

rwfs on /var type tmpfs (rw,relatime,size=4096k)

usbfs on /proc/bus/usb type usbfs (rw,relatime)

debug on /sys/kernel/debug type debugfs (rw,relatime)

NOTE: Developers can ignore the first line ‘rootfs on / type rootfs (rw)’ seen above. This is

supposed to be hidden since it is a virtual fs that only the kernel users.

3.2.13 Useful Scripts

To help simplify some actions common to many developers, Logic PD includes several scripts

in the U-Boot default environment. This section describes these scripts and provides

information on how to use them.

NOTE: Use the printenv command followed by the script name to display the script. These

scripts can provide useful examples for users to modify or write their own scripts.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 41

3.2.13.1 makenandboot Script

The makenandboot script is used to perform all steps in Section 3.2.10.4. This script assumes

the following files are saved on the SD card:

■ X-Loader (file name MLO)

■ U-Boot (file name u-boot.bin)

■ Signed U-Boot (file name u-boot.bin.ift). This file includes the size of the image in the

file header and is used when booting from NAND flash to speed up boot by preventing

unused NAND flash from being read.

■ Linux kernel (file name uImage)

■ RAM-based root filesystem (file name rootfs.ext2.gz.uboot)

With these files on an SD card that is inserted into the bootable SD card slot on the

baseboard, the makenandboot script can be run using the command below.

OMAP Logic # run makenandboot

After entering the command, review the output for any errors. Once complete, remove the

SD card and cycle the power on the SOM.

3.2.13.2 makeyaffsboot Script

The makeyaffsboot script is used to perform all steps in Section3.2.10.5. This script assumes

the following files are saved on the SD card:

■ X-Loader (file name MLO)

■ U-Boot (file name u-boot.bin)

■ Signed U-Boot (file name u-boot.bin.ift). This file includes the size of the image in the

file header and is used when booting from NAND flash to speed up boot by preventing

unused NAND flash from being read.

■ Linux kernel (file name uImage)

■ YAFFS-based root filesystem (file name rootfs.yaffs2). See Section 2.5.5.1 for

additional information about how to create a rootfs.yaffs2 image.

With these files on an SD card that is inserted into the bootable SD card slot on the

baseboard, the makeyaffsboot script can be run using the command below.

OMAP Logic # run makeyaffsboot

After entering the command, review the output for any errors. Once complete, remove the

SD card and cycle the power on the SOM.

3.2.14 Debug UART

The default debug console is UARTA. The information below provides an example for

developers looking to move the debug console from UARTA to UARTB. Similar steps can be

used by developers looking to move the debug console from UARTA to UARTC.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 42

1. Build default system using defconfig in Section 2.4.

2. Modify the omap3logic.h file located at ~\logic\logic\Logic_BSPs\Linux_3.0\REL-ltib-

DM3730-2.4-2\rpm\BUILD\u-boot-2011.06\include\configs\omap3logic.h.

Change line 108 from:

/*

 * select serial console configuration

 */

//#define CONFIG_CONS_INDEX 1

//#define CONFIG_SYS_NS16550_COM1 OMAP34XX_UART1

//#define CONFIG_SERIAL1 1 /* UART1 on OMAP3

EVMOMAP Logic boards */

To:

/*

 * select serial console configuration

 */

#define CONFIG_CONS_INDEX 3

#define CONFIG_SYS_NS16550_COM3 OMAP34XX_UART3

#define CONFIG_SERIAL3 3 /* UART3 on OMAP3 EVMOMAP

Logic boards */

3. Modify the logic.c file located at ~\logic\logic\Logic_BSPs\Linux_3.0\REL-ltib-DM3730-

2.4-2\rpm\BUILD\u-boot-2011.06\board\ti\logic\logic.c.

Change line 1198 from:

 MUX_VAL(CP(UART3_RX_IRRX), (IEN | PTD | EN | M7));

/*UART3_RX_IRRX*/

 MUX_VAL(CP(UART3_TX_IRTX), (IEN | PTD | EN | M7));

/*UART3_TX_IRTX*/

To:

 MUX_VAL(CP(UART3_RX_IRRX), (IEN | PTD | DIS | M0));

/*UART3_RX_IRRX*/

 MUX_VAL(CP(UART3_TX_IRTX), (IDIS | PTD | DIS | M0));

/*UART3_TX_IRTX*/

4. The default UART debug console in the kernel is also UARTA. To change the default

debug console in the kernel change the consoledevice to ttyO2 for UARTB in the

U-Boot variable. Use ttyO1 for UARTC.

OMAP Logic # setenv consoledevice ttyO2

5. Save the environment to NAND so that the variable is available on the next boot.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 43

OMAP Logic # saveenv

Saving Environment to NAND...

Erasing Nand...

Erasing at 0x260000 -- 100% complete.

Writing to Nand... done

6. Modify the defaults.lkc file located at ~\logic\logic\Logic_BSPs\Linux_3.0\REL-ltib-

DM3730-2.4-2\config\userspace\defaults.lkc.

Change line 124 from:

config SYSCFG_CONSOLEDEV

 string

 default "ttyS0"

To:

config SYSCFG_CONSOLEDEV

 string

 default "ttyO2"

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 44

4 Kernel

This section describes commonly used Linux shell commands. In no way is this section

comprehensive; Linux is always changing, and many packages can be added or removed. Visit

the Linux Kernel Archives website21 and the open source community for information on

additional commands.

To begin, log in to the kernel in Tera Term to get to the prompt; the password is set to root.

For more information on the Linux kernel, look inside the rpm/BUILD/linux/Documentation

sub-directory.

Follow the steps below to convert the DocBook XML files in that directory to HTML files so you

can view them with any web browser. Be sure to replace <your LTIB directory> with a value

appropriate for your system.

bash$ sudo apt-get install xmlto xmltex

bash$ cd <your LTIB directory>

bash$ cd rpm/BUILD/linux

bash$ make htmldocs

Then, use your favorite bowser to access the DocBook rpm/BUILD/linux-

3.0/Documentation/DocBook/index.html page.

4.1 vi Editor

Much of Linux is configured with various text files. The vi Editor is a simple, light-weight editor

commonly used to edit text files; it should be used to edit the text files as described in the

following sections. It is beyond the scope of this document to describe how to use the vi

Editor; however, there are many documents available on the Internet that provide

instructions.

21 http://www.kernel.org/

http://www.kernel.org/
http://www.kernel.org/

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 45

To start the vi Editor, simply enter the vi <file> command at the Linux prompt, where <file>

is the name of the file you wish to edit.

DM-37x# vi /etc/network/interfaces

4.2 Retrieve BSP Version

To obtain the BSP version, log in to Linux on the SOM and enter the command below.

DM-37x# cat /proc/version

Linux version 3.0.101-BSP-dm37x-2.4-4 (logic@logic-Virtualbox) (gcc

version 4.3.3 (Sourcery G++ Lite 2009q1-203)) #8 Thu Aug 27 08:40:27

CDT 2015

4.3 Display Product ID System Information

Information specific to the SOM is stored in the Product ID chip on the module. This

information is stored in files when booting the Linux OS. The commands below allow the user

to access this information at the command line.

Logic PD (LPD) part number

DM-37x# cat /sys/class/product_id/part_number

Logic PD (LPD) model number

DM-37x# cat /sys/class/product_id/model_name

Logic PD (LPD) serial number

DM-37x# cat /sys/class/product_id/serial_number

LAN MAC address for on-board Ethernet

DM-37x# cat /sys/class/product_id/lan_macaddr

Wi-Fi MAC address for on-board Wi-Fi

DM-37x# cat /sys/class/product_id/wifi_macaddr

4.4 Display Linux System Information

The Linux commands below provide additional system information.

provided cmdline passed in by U-Boot to the kernel

DM-37x# cat /proc/cmdline

memory space

DM-37x# cat /proc/meminfo

partition information on NAND and NOR flash (does not display SD card

or USB memory stick partitions)

DM-37x# cat /proc/mtd

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 46

partition size availability

DM-37x# df –k

4.5 Wired Networking

4.5.1 Assign Development Kit IP Address

The pre-built Linux images do not automatically configure a network interface. However,

configuring a network interface by hand is rather straight forward and there are several

options from which to choose. In the following sections, we will set the kernel command line

argument ip shown below.

ip=<client_ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>

The kernel command line is passed into the kernel from U-Boot via the U-Boot otherbootargs

environment variable. See Section 3.2.5 for information about how to set the kernel command

line from U-Boot.

NOTE: The kernel will use the default value of any argument omitted.

4.5.1.1 Use ifconfig Command to Report Ethernet Status

The ifconfig command with no arguments can be used to report the status of all Ethernet

interfaces.

DM-37x# ifconfig

eth0 Link encap:Ethernet HWaddr 00:08:EE:05:88:F1

 inet addr:10.0.5.202 Bcast:0.0.0.0 Mask:255.255.252.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:4398 errors:0 dropped:15 overruns:0 frame:0

 TX packets:5 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:459964 (449.1 KiB) TX bytes:378 (378.0 B)

 Interrupt:33

DM-37x#

4.5.1.2 Add DHCP from Kernel Command Line

In U-Boot, add ip=::::::dhcp to the kernel command line. To do this, you can reboot the

system, pause U-Boot, and add the above value to the otherbootargs environment variable.

You can then execute the boot command or save the environment for future boot from power

up. See Section 3.2.5 for more information on setting U-Boot environment variables.

OMAP Logic # echo $otherbootargs

ignore_loglevel early_printk no_console_suspend

OMAP Logic # setenv otherbootargs ${otherbootargs} ip=::::::dhcp

OMAP Logic # echo $otherbootargs

ignore_loglevel early_printk no_console_suspend ip=::::::dhcp

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 47

When booting, the kernel will wait to acquire an IP address. Be sure to have the Ethernet

cable connected when booting.

NOTE: If you want this configuration to be used on a future power cycle, be sure to use the

U-Boot saveenv command. See Section 3.2.4 for more information.

4.5.1.3 Add Static IP Address from Kernel Command Line

To add a static IP address to the kernel command line, follow the example in Section 4.5.1.2,

but add ip=ip-address::gateway-address:netmask::: to the kernel command line in place

of ip=::::::dhcp. Replace ip-address, gateway-address, and netmask with your unique

values.

4.5.1.4 Using DHCP

Edit the /etc/network/interfaces file to configure eth0 for DHCP operation by including the

following line:

iface eth0 inet dhcp

Next, use the ifup command to bring up the interface.

DM-37x# ifup eth0

DM-37x#

4.5.1.5 Using Static IP

Edit the /etc/network/interfaces file to configure eth0 with a static IP address by adding the

following lines, where <> indicates where your unique user values should be inserted.

iface eth0 inet static

address <>

netmask <>

gateway <>

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 48

Next, use the ifup command to bring up the interface.

DM-37x# ifup eth0

DM-37x#

4.5.1.6 Use ifconfig Command with DHCP

Bring up the network and obtain an IP address from the DHCP server using the commands

below.

DM-37x# ifconfig eth0 up

DM-37x# udhcpc -i eth0

4.5.2 Set Speed, Duplex, and Auto-Negotiate

By default, the wired Ethernet supports auto-negotiation. Should you need to manually force

the speed or duplex settings of the interface, the demo image includes the ethtool command.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 49

Use autoneg off when moving from 100 Mbs to 10 Mbs or from full duplex to half duplex. Use

autoneg on when moving from 10 Mbs to 100 Mbs or from half duplex to full duplex. Your

network equipment may respond differently, so this may vary in your situation. Examples are

included below.

DM-37x# ethtool -s eth0 autoneg off speed 10 duplex half

DM-37x# ethtool -s eth0 autoneg on speed 100 duplex

4.5.3 Test Network

The demo image includes the inetd program. To enable services, uncomment the appropriate

line in the inetd configuration file found in /etc/inetd.conf.

1. Start the inetd server.

DM-37x# /etc/rc.d/init.d/inetd start

2. If you modify the configuration file while inetd is running and would like inetd to

reconfigure itself, send it the HUP signal.

DM-37x# killall -HUP inetd

3. You may also start the Dropbear SSH server on your DM3730 Development Kit using

the command below.

DM-37x# /etc/rc.d/init.d/dropbear start

4. Once the Dropbear server has been started on the SOM, you may SSH to the SOM

using the command below on your Linux host PC, where ww.xx.yy.zz is the SOM’s

IP address:

ssh root@ww.xx.yy.zz

4.6 Linux Processes

Linux manages many concurrent processes. The following tools can help users manage those

processes.

4.6.1 ps Command

The ps command is used to display the Linux processes. Since there tends to be a large

number of processes running, the ps command accepts several arguments to help sort

through the process list. Use ps -help at the Linux prompt to see all the arguments available

to ps.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 50

The following example shows a list of all the processes running. NOTE: This list may differ

from the list on your DM3730 Development Kit.

DM-37x# ps agux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.3 0.2 2144 624 ? Ss 22:23 0:06 init

root 2 0.0 0.0 0 0 ? S 22:23 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S 22:23 0:00 [ksoftirqd/0]

root 4 0.0 0.0 0 0 ? S 22:23 0:00 [kworker/0:0]

root 5 0.0 0.0 0 0 ? S 22:23 0:00 [kworker/u:0]

root 6 0.1 0.0 0 0 ? S 22:23 0:01 [rcu_kthread]

root 7 0.0 0.0 0 0 ? S< 22:23 0:00 [khelper]

root 11 0.0 0.0 0 0 ? S 22:23 0:00 [sync_supers]

root 12 0.0 0.0 0 0 ? S 22:23 0:00 [bdi-default]

root 13 0.0 0.0 0 0 ? S< 22:23 0:00 [kblockd]

root 14 0.0 0.0 0 0 ? S< 22:23 0:00 [omap2_mcspi]

root 15 0.0 0.0 0 0 ? S 22:23 0:00 [khubd]

root 17 0.0 0.0 0 0 ? S 22:23 0:00 [twl4030-irq]

root 19 0.0 0.0 0 0 ? S 22:23 0:00 [kworker/u:1]

root 20 0.0 0.0 0 0 ? S< 22:23 0:00 [l2cap]

root 21 0.0 0.0 0 0 ? S< 22:23 0:00 [cfg80211]

root 22 0.0 0.0 0 0 ? S 22:23 0:01 [kworker/0:1]

root 23 0.0 0.0 0 0 ? S< 22:23 0:00 [rpciod]

root 24 0.0 0.0 0 0 ? S 22:23 0:00 [kswapd0]

root 26 0.0 0.0 0 0 ? S< 22:23 0:00 [nfsiod]

root 33 0.0 0.0 0 0 ? S 22:23 0:00 [mtdblock0]

root 34 0.0 0.0 0 0 ? S 22:23 0:00 [mtdblock1]

root 35 0.0 0.0 0 0 ? S 22:23 0:00 [mtdblock2]

root 36 0.0 0.0 0 0 ? S 22:23 0:00 [mtdblock3]

root 37 0.0 0.0 0 0 ? S 22:23 0:00 [mtdblock4]

root 38 0.0 0.0 0 0 ? S 22:23 0:00 [mtdblock5]

root 41 0.0 0.0 0 0 ? S< 22:23 0:00 [kpsmoused]

root 44 0.0 0.0 0 0 ? S< 22:23 0:00 [krfcommd]

root 45 0.0 0.0 0 0 ? S 22:23 0:00 [mmcqd/0]

root 56 0.1 0.2 1828 560 ? S<s 22:23 0:02 udevd --daemon

root 651 0.0 0.1 2144 448 ? Ss 22:23 0:00 /sbin/syslogd

root 653 0.0 0.1 2144 464 ? Ss 22:23 0:00 /sbin/klogd

root 681 0.0 0.5 2428 1220 ttyO0 Ss 22:23 0:00 -sh

root 705 0.0 0.0 0 0 ? S 22:49 0:00 [flush-1:0]

root 707 0.0 0.3 2248 848 ttyO0 R+ 22:49 0:00 ps agux

4.6.2 kill Command

The kill command is used to stop a process. Processes are referenced by their process ID

(PID). The PID of a process can be found using the ps command. Below, we will use the kill

command with the -9 argument to force the process to stop immediately without question.

DM-37x# kill -9 688

DM-37x#

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 51

4.7 Video Display

Configuring the display type is done in U-Boot. Once the $display variable is set, the boot

sequence will pass that display type to the kernel in the $bootargs environment variable.

Please refer to Section 3.2 on U-Boot for further information on configuring the display.

4.7.1 Draw Test

To perform a video test on an LCD panel, connect the LCD to your DM3730 Development Kit

and enter the command below.

DM-37x# draw-test

Your LCD panel will display a pattern similar to that shown in Figure 4.1 below.

Figure 4.1: LCD Draw Test Display Pattern

4.7.2 DirectFB

The demo image comes with several DirectFB sample programs. You should launch these test

programs in the background using the "&" character to avoid losing your command prompt, as

the programs do not take input over ttyS0 once they have started.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 52

For example, try the following programs one at a time, killing each one using kill -9 pid after it

completes.

DM-37x# df_dok &

DM-37x# df_andi &

DM-37x# df_knuckles &

4.7.3 Backlight

The backlight can be controlled using the commands below. The range can be anywhere from

0 (off) to 255 (full brightness).

DM-37x# echo 0 > /sys/class/backlight/omap3logic/brightness

DM-37x# echo 255 > /sys/class/backlight/omap3logic/brightness

The console backlight blanks after ten minutes. Below is information about how to prevent

console backlight blanking or to recover from the console backlight blanking.

To prevent the console backlight from blanking after ten minutes, add consoleblank=0 to the

kernel command line.

OMAP Logic # setenv otherbootargs "$otherbootargs consoleblank=0"

To bring back the backlight after it has turned off due to console backlight blanking, use the

following command in the Linux debug console.

DM-37x# echo -e '\033[13]' > /dev/tty0

The following command sets the screen blank timeout to <n> minutes.

DM-37x# echo -e '\033[9;<n>]' > /dev/tty0

Example: This commend changes the screen blank timeout to 5 minutes.

DM-37x# echo -e '\033[9;5]' > /dev/tty0

The following command cancels screen blanking.

DM-37x# echo -e '\033[9]' > /dev/tty0

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 53

4.7.4 Display Message

The echo command can be used to display text messages on the LCD. In this example,

“Hello World” text will be seen on the LCD assigned to tty0.

DM-37x# echo “Hello World” > /dev/tty0

4.8 Audio

Support for audio-out is available in the demo image via the following programs:

■ aplay <sound file>

■ mp3play <MP3 file>

Volume can be controlled using the command below; the <field> and <limit> variables in the

command are defined in Table 4.1. NOTE: The quotes around the <field> strings in Table 4.1

are required when using the amixer command.

DM-37x# amixer set <field> <limit>

Table 4.1: Field and Limit Definitions

<field> <limit>

“DAC1 Digital Fine” 0-63

“DAC1 Analog” 0-18

“DAC1 Digital Coarse” 0-2

The following command can be used to mute:

DM-37x# amixer set Master mute

Simple mixer control 'Master',0

 Capabilities: pswitch pswitch-joined

 Playback channels: Mono

 Mono: Playback [off]

The following command can be used to unmute:

DM-37x# amixer set Master unmute

Simple mixer control 'Master',0

 Capabilities: pswitch pswitch-joined

 Playback channels: Mono

 Mono: Playback [on]

To test microphone record from line-in:

DM-37x# arecord -f cd --duration=10 > ~/output.wav

DM-37x# aplay ~/output.wav

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 54

To test the microphone to record from audio-in follow these steps:

1. Default is line-in. If it is desired, skip to step 2. If a microphone is to be used, enable

headset mic bias:

DM-37x# i2cset -f -y 1 0x49 0x04 0x04

2. Launch the ‘alsamixer’ application.

DM-37x# alsamixer

3. Hit tab - this will switch it from Playback mode to Capture mode

4. Arrow over to Analog Left AUXL and disable it using the space bar

5. Arrow over to Analog Left Headset Mic and enable it

6. Arrow over to Analog Right AUXR and disable it

7. Connect the tip of the mic to the MIC_IN signal and then ground the other mic signal.

If the audio is faint increase the gain using AlsaMixer (first item on the left) to 30 Db

as seen in the figure below.

Note: The audio driver is located in the ~/logic/Logic_BSPs/Linux_3.0/REL-ltib-DM3730-2.x-

x/rpm/BUILD/linux/sound directory of the Linux kernel. The OPT_MODE=0 is set by default

and must not be changed. Caution should be taken when making changes to the audio

configuration as it is complex.

This table below can be used when cross referencing Figure 14-7 (Voice/Audio Option 2

(OPT_MODE = 0) Block Diagram) in the TPS65950 Technical Reference Manual Rev G22.

amixer name TPS65950 register
Default amixer
Setting (range)

Register
Setting

Analog ANAMIC_GAIN 5 (0-5) 0x5 (30dB)

TX1 Digital ATXL1PGA/ATXR1PGA 15 (0-31) 0xf (15dB)

DAC1 Digital
Coarse ARXL1PGA/ARXR1PGA coarse 1 (0-2) 0x1 (6dB)

DAC1 Digital Fine ARXL1PGA/ARXR1PGA fine 63 (0-63) 0x3f (0dB)

DAC1 Analog ARXL1_APGA_CTL/ARXR1_APGA_CTL 12 (0-18) 0x6 (0dB)

Headset HS_GAIN_SET 1 (0-3) 0x3 (-6dB)

22 http://www.ti.com/lit/pdf/swcu050

http://www.ti.com/lit/pdf/swcu050

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 55

4.9 External Memory Interface

The demo image includes support for SD/MMC memory cards. If the card is present at boot

time, it should be automatically detected, mounted, and made available at /mnt/mmcblk0p1.

The SD/MMC interface is found at /dev/mmcblk0 and the first partition is located at

/dev/mmcblk0p1. If the card is not mounted automatically, use the commands below to

mount the SD/MMC card.

NOTE: The location where the SD card is mounted is arbitrary. The example below mounts the

SD card to the location /mnt/sdcard.

DM-37x# mkdir /mnt/sdcard

DM-37x# mount -t vfat /dev/mmcblk0p1 /mnt/sdcard

4.10 Touch Screen

The demo image includes support for the DM3730 Development Kit’s touch screen via the

special file /dev/input/event0.

To view raw touch data, try the octal dump command and then touch the screen. Press

Ctrl+C to exit raw data view.

To calibrate the touch screen, use the commands below.

DM-37x# export TSLIB_TSDEVICE=/dev/input/event0

DM-37x# export TSLIB_CALIBFILE=/etc/pointercal

DM-37x# export TSLIB_CONSOLEDEVICE=none

DM-37x# export TSLIB_FBDEVICE=/dev/fb0

DM-37x# ts_test

Verify touches respond appropriately and then enter the command below.

DM-37x# ts_calibrate

4.11 Built-in Flash Storage via MTD

To determine where flash partitions are, enter the command below and look for something

similar to “nor-flash” or "NAND fs” in the output.

DM-37x# cat /proc/mtd

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 56

NOTE: The above partition map may differ from that on your DM3730 Development Kit

depending on the Linux BSP version and the hardware you have installed.

4.11.1 Erase Flash Partitions

WARNING: Do not erase any partitions unless you are certain you know what they are and

that your system will be able to recover. Please understand how your system boots before

erasing any partitions.

Before you begin to use a flash partition, you should completely erase it. Use the command

below to do so, where x is the number of the partition you wish to erase as identified in the

output from the /proc/mtd command.

DM-37x# flash_eraseall /dev/mtdx

For example, to completely erase the NOR flash partition identified in Section 4.11 above, use

the command below.

DM-37x# flash_eraseall /dev/mtd6

4.11.2 Mount NOR Flash using JFFS2

NOTE: Support for JFFS2 may be limited. Starting with the Linux kernel 3.0, there have been

some fundamental changes to the kernel prohibiting the use of JFFS2. Development of JFFS2

by the open source community has also ceased.

You can use the mount command to access on-board NOR flash. In the example below, the

NOR flash filesystem partitions previously mentioned are mounted using the JFFS2 flash

filesystem.

DM-37x# mkdir /mnt/jffs2-nor (make a mount point)

DM-37x# mount -t jffs2 /dev/mtdblock6 /mnt/jffs2-nor (mount the file

system)

If errors occur format the NOR flash using one of these two methods.

1. Restart the system using LogicLoader and erase the flash using ‘erase /dev/flash0 B0 B64’.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 57

2. From within Linux run ‘flash_eraseall /dev/mtd6’.

4.11.3 Mount NAND Flash using YFFS2

You can use the mount command to access on-board NAND flash. In the example below, the

NAND flash filesystem partitions are mounted using the YFFS2 flash filesystem.

DM-37x# mkdir /mnt/yffs2-nand

DM-37x# mount -t yffs2 /dev/mtdblock5 /mnt/yffs2-nand

4.12 Wireless Networking with Linux 2.6x Kernels

IMPORTANT NOTE: Kernel 2.6x is considered deprecated in terms of Logic PD support.

Users are encouraged to update to the latest BSP which uses a 3.0 based Linux kernel.

4.13 Wireless Networking with Linux 3.x Kernels

Wireless networking with Linux 3.x kernels uses open source drivers and an open source WPA

supplicant. To simplify starting the wireless network, Logic PD includes two scripts in the Linux

filesystem. One script is for station mode (client-side connection) and the other script is for

access point (AP) mode (host Wi-Fi connections). These scripts will start up all the necessary

services for each mode. By reviewing these scripts, customers can create their own

connections for their application.

NOTE: If you are using a Logic PD Linux BSP with a kernel version prior to 3.x, please see

Section 4.12.

NOTE: Customers who have critical data to send over WiFi should ensure the SOM remains

within the range of other devices on the WiFi network. Due the volatile nature of WiFi and the

potential for external influences, customers are also suggested to implement a retry

mechanism in the event the SOM is unable to transmit data.

4.13.1 Start Wireless Interface in Station Mode

As mentioned above, a script is used to start the wireless interface and additional details about

the script can be reviewed using the cat command at the Linux shell prompt.

Below is an example of how to start the Wi-Fi network in station mode. Run the script and

answer the three subsequent questions using the following information:

■ SSID: myssid

■ Encryption: WPA2

■ Passphrase: myssidpassphrase

DM-37x# /etc/rc.d/init.d/network-wifi-station init

Importing configuration variables from /etc/rc.d/rc.conf

Bring down wlan0

ifdown: interface wlan0 not configured

Stopping wpa_supplicant:

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 58

killall: wpa_supplicant: no process killed

Removing /etc/wpa_supplicant.conf

wpa_supplicant: Missing /etc/wpa_supplicant.conf; recreating

wpa_supplicant: Missing SSID/Passphrase

wpa_supplicant: Enter WiFi SSID to connect to: myssid

wpa_supplicant: Enter Encryption mode (NONE, WEP40, WEP128, WPA, WPA2):

WPA2

wpa_supplicant: Enter WiFi WPA2 passphrase: myssidpassphrase

loading wl12xx_sdio

[62.964935] wl12xx: loaded

[62.967803] wl12xx: initialized

Starting wpa_supplicant:

[64.270355] wl1283: firmware booted (Rev 7.1.3.50.58)

Bouncing WiFi interface (workaround).

[64.398529] wl1283: down

[65.253967] wl1283: firmware booted (Rev 7.1.3.50.58)

udhcpc (v1.15.1) started

Sending discover...

[67.363342] wlan0: authenticate with 00:18:e7:db:a9:7d (try 1)

[67.378723] wlan0: authenticated

[67.464904] wlan0: associate with 00:18:e7:db:a9:7d (try 1)

[67.476470] wlan0: RX AssocResp from 00:18:e7:db:a9:7d (capab=0x431

status=0 aid=2)

[67.484680] wlan0: associated

[67.570617] wl1283: Association completed.

Sending discover...

Sending select for 192.168.0.195...

Lease of 192.168.0.195 obtained, lease time 86400

Deleting routers

adding dns 192.168.0.1

DM-37x#

Now the network is up and running. From this point on, all networking features (e.g., ping,

ifconfig) are available just as in the wired case.

4.13.1.1 Scan for Available Wireless Networks

Once the wireless network has been initialized in station mode, you can scan for available

networks using the command below.

DM-37x# iw dev wlan0 scan

4.13.2 Start Wireless Interface in AP Mode

As mentioned above, a script is used to start the wireless interface and additional details about

the script can be reviewed using the cat command at the Linux shell prompt.

Below is an example of how to start the wireless network in AP mode. Run the script and

answer the three subsequent questions using the information provided below. The script will

start the wireless in AP mode, the wired network, the UDHCPC for the wireless network, and

DNSmasq.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 59

■ SSID: myssid

■ Encryption: WPA2

■ Passphrase: myssidpassphrase

DM-37x# /etc/rc.d/init.d/network-wifi-ap init

Importing configuration variables from /etc/rc.d/rc.conf

Stoping hostapd

killall: hostapd: no process killed

Stopping dhcpd

killall: dhcpd: no process killed

Stopping dnsmasq

killall: dnsmasq: no process killed

Deleting iptable/chains from kernel:

Bring down eth0

ifdown: interface eth0 not configured

loading wl12xx_sdio

[76.238311] wl12xx: loaded

[76.241149] wl12xx: initialized

Bring up eth0

[76.526428] smsc911x smsc911x.0: eth0: SMSC911x/921x identified at

0xd0876000, IRQ: 289

udhcpc (v1.15.1) started

Sending discover...

Sending discover...

Sending discover...

[84.254150] eth0: link up, 100Mbps, full-duplex

No lease, forking to background

Setup iptable forwarding between eth0 and wlan0:

Starting dnsmasq:

Assign wlan0 IP address 172.31.1.1

[87.219543] wl1283: firmware booted (Rev 7.1.3.50.58)

Starting the dhcp server on wlan0:

Internet Systems Consortium DHCP Server V3.0.3b1

Copyright 2004-2005 Internet Systems Consortium.

All rights reserved.

For info, please visit http://www.isc.org/sw/dhcp/

Wrote 0 leases to leases file.

Listening on Socket/wlan0/172.31.1/24

Sending on Socket/wlan0/172.31.1/24

Sending on Socket/fallback/fallback-net

Stopping hostapd:

killall: hostapd: no process killed

hostapd: Missing /etc/hostapd.conf; re-creating

hostapd: Enter WiFi SSID to advertise: myssid

hostapd: Enter Encryption mode (NONE, WEP40, WEP128, WPA, WPA2): WPA2

hostapd: Enter WiFi WPA2 passphrase: myssidpassphrase

Starting hostapd:

Configuration file: /etc/hostapd.conf

[106.121765] wl1283: down

[107.089019] wl1283: firmware booted (Rev 7.2.0.0.47)

Using interface wlan0 with hwaddr 00:08:ee:05:7d:fc and ssid 'myssid'

DM-37x# [128.728332] NOHZ: local_softirq_pending 08

[129.435272] NOHZ: local_softirq_pending 08

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 60

[135.453948] NOHZ: local_softirq_pending 08

[159.473907] NOHZ: local_softirq_pending 08

[165.476837] NOHZ: local_softirq_pending 08

[165.493408] NOHZ: local_softirq_pending 08

[171.555816] NOHZ: local_softirq_pending 08

[171.635589] NOHZ: local_softirq_pending 08

[195.508026] NOHZ: local_softirq_pending 08

[201.517669] NOHZ: local_softirq_pending 08

4.13.3 Start Wireless Interface in Multi-Role

Note: This is only available with the Wireless Backports installed. The stock drivers are not

capable of supporting multi-role. Make sure the /etc/rc.d/rc.conf has been modified per the

backport instructions to change the wl12xx_sdio driver to wlcore_sdio instead.

As a suggestion, doing the following examples using yaffs instead of a RAMdisk will retain the

generated files which make the configuration go by more quickly.

1. Go through the exercises for Access Point in 4.13.2 with NAT/Masquerade enabled to

generate hostapd.conf file.

2. Go through the exercises for Station Mode found in 4.13.1 to generate the

/etc/wpa_supplicant.conf file.

3. Once connected as station mode, add a new managed mode interface called wlan1

DM-37x# iw phy0 interface add wlan1 type managed

4. Configure wlan1 as AP mode and set IP address of wlan1

DM-37x# ifconfig wlan1 10.4.30.34 netmask 255.255.255.0 up

5. Check the channel of the Wifi Channel of the wlan0 station

DM-37x# iw dev wlan0 scan

6. Depending on the number of available WiFi networks, this list may vary. Look for the

corresponding SSID of the network connection on wlan0 then identify the DS

Parameter set: Channel X

7. Edit the /etc/hostapd.conf file and exit the channel in hostapd.conf to match the value

of X from step 6.

8. Change the interface on hostapd.conf to interface=wlan1

9. Save the hostapd.conf file

10. Invoke hostapd with the following:

DM-37x# hostapd -B /etc/hostapd.conf -P /var/run/hostapd.pid

11. Enable IP forwarding:

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 61

DM-37x# echo 1 > /proc/sys/net/ipv4/ip_forward

12. Edit /etc/udhcpd.conf

13. Change the interface from eth0 to wlan1

14. Save /etc/udhcpd.conf

15. Invoke udhcpd which will assign the IP addresses to the connecting devices

DM-37x# udhcpd /etc/udhcpd.conf

16. Start iptables with nat enabled.

DM-37x# iptables -t nat -A POSTROUTING -o wlan0 -j MASQUERADE

4.13.4 Setting Regulatory Domains Using the CRDA (Central Regulatory Domain Agent)

Users has the ability to changing regulatory domains in compliance with regulatory restrictions

world wide. The BSPoffers a userspace ‘iw’ applications to enable system designers to set

their specific regulatory domain.

Select regulatory domain for United States

DM-37x# iw reg set US

Select regulatory domain for Canada

DM-37x# iw reg set CA

All others regulatory domain have been disabled. Contact Logic PD23 if your design needs

support for additional regulatory domains outside the US and Canada.

Hostapd has a country_code option inside it, so setting this to US (default) sets CRDA

automatically if you want to be an Access Point.

If you modify /etc/hostapd.conf and change the country_code=US to CA, you'll see CRDA

switch to Canada. Since IC and FCC have the same limits and testing, there is really no

difference between them.

4.14 Bluetooth

There are two Bluetooth Stacks available in the BSP. The following instructions in this guide

are for the basic BlueZ stack enabled by default. For details on Bluetooth pairing, Connecting

a Network Access Point (NAP), Audio Streaming, Human Interface Device or Serial over

Bluetooth, users are suggested to see Application Note 605: DM3730/AM3703 Torpedo +

Wireless SOM Bluetooth with the DM37x Linux BSP.

NOTE: Customers who have critical data to send over Bluetooth should ensure the SOM

remains within the range of other Bluetooth devices. Due the volatile nature of wireless

23 http://www.logicpd.com/contact/

http://www.logicpd.com/contact/inquiry/
https://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=2976
https://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=2976

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 62

signals and the potential for external influences, customers are also suggested to implement a

retry mechanism in the event the SOM is unable to transmit data.

The Bluetooth controller has the same serial interface as the GPS controller. To use the

Bluetooth device or the GPS device, the shared transport service must first be started.

1. With the gpsdemo application on your target, begin by adding the GPS module to the

kernel.

DM-37x# modprobe st_drv

[124.591705] (stk) :sysfs entries created

[124.596252] (stk) : debugfs entries created

DM-37x#

2. Start the shared transport utility. Because the Bluetooth and GPS share the same

interface to the wireless module, the shared transport utility manages traffic destined

for Bluetooth or GPS.

DM-37x# /home/root/wl12xx/uim &

[1] 705

DM-37x#

3. Start the Bluetooth WiLink™ service.

DM-37x# modprobe btwilink

[80.523803] Bluetooth: Bluetooth Driver for TI WiLink - Version 1.0

[80.545806] (stc): st_register(2)

[80.549346] (stc): chnl_id list empty :2

[80.553771] (stk) : st_kim_start

[80.662017] (stk) :ldisc_install = 1uim: Inside mainuim: Inside

st_uart_configuim:install set to 1

4.14.1 Start or Stop Bluetooth Interface

Use the command below to start the Bluetooth interface.

DM-37x# hciconfig hci0 up

Use the command below to stop the Bluetooth interface.

DM-37x# hciconfig hci0 down

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 63

4.14.2 Assign Hardware Name

Use the command below to assign a name to the hardware, substituting <your_name> with

the identifying name you would like to use.

DM-37x# hciconfig hci0 name <your_name>

4.14.3 View Bluetooth Device Configuration

Use the command below to view the Bluetooth device configuration.

DM-37x# hciconfig -a hci0

4.14.4 Modify Bluetooth Device Configuration

Use the command below to modify the Bluetooth device configuration, using the hexadecimal

identifier of your device class.

DM-37x# hciconfig hci0 class 0xXXXXXXXX

4.14.5 Scan for Bluetooth Devices

Use the command below to scan for remote Bluetooth devices.

DM-37x# hcitool scan

4.14.6 Query Bluetooth Device

Use the command below to query a specific Bluetooth device, substituting

XX:XX:XX:XX:XX:XX with the six-byte MAC address of the device.

DM-37x# hcitool info XX:XX:XX:XX:XX:XX

4.15 USB Controller

Use the commands below to display information on all USB devices connected to either the

USB Host or USB OTG controllers.

DM-37x# /usr/sbin/lsusb

Bus 002 Device 001: ID 1d6b:0002

Bus 001 Device 002: ID 0471:3526 Philips

Bus 001 Device 001: ID 1d6b:0002

DM-37x# /usr/sbin/lsusb -v

Bus 002 Device 001: ID 1d6b:0002

Device Descriptor:

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 64

 bLength 18

 bDescriptorType 1

 bcdUSB 2.00

 bDeviceClass 9 Hub

 bDeviceSubClass 0 Unused

 bDeviceProtocol 1 Single TT

 bMaxPacketSize0 64

 idVendor 0x1d6b

 idProduct 0x0002

 bcdDevice 3.00

 iManufacturer 3 Linux 3.0.0-BSP-dm37x-2.4-2 musb-hcd

 iProduct 2 MUSB HDRC host driver

 iSerial 1 musb-hdrc

 bNumConfigurations 1

…

4.16 USB Host Controller

The DM3730 Development Kit's standard USB Type A connector (flat, rectangular) is attached

to the host controller. The device driver for this peripheral is included in the demo images. The

interface has been tested with various USB hubs, flash drives, keyboards, and mouse devices.

4.17 Processor OTG Controller

The DM3730 and AM3703 processors include an Inventra high-speed, dual-role controller

commonly referred to as MUSB. This peripheral is attached to the type mini-A connector on

the DM3730 Development Kit baseboard. This interface has proven difficult to work with when

run in OTG mode; therefore, Logic PD has chosen to build the demo images with the MUSB

peripheral configured as either a dedicated host or dedicated device.

4.17.1 Use MUSB in Host Mode

When attempting to use the MUSB in host mode, it is important that you use a proper OTG

cable with a real mini-A connector plugged into the DM3730 Development Kit. A mini-B

connector looks very similar to a mini-A connector and will mate with a mini-A; however, the

mini-B connectors will not properly configure the ID pin that forces the OTG controller into

host mode. One acceptable mini-A cable is the 2 meter USB OTG cable from Lindy24

(PN 31634).

Once the proper cable is connected, load and boot the standard demo image. You can then

use the interface normally.

4.17.2 Use MUSB in Device Mode

The demo images include modules that support Ethernet and File-backed Storage Gadgets

(FSG). To get started, load and boot the standard demo image.

To use the device as an Ethernet-over-USB gadget, follow the steps below.

1. Connect the DM3730 Development Kit to a Linux host PC using the included USB

mini-B to Standard-A cable.

2. Configure the new network connection on the Linux host PC.

24 http://www.lindy-usa.com/

http://www.lindy-usa.com/
http://www.lindy-usa.com/

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 65

bash$ ifconfig usb0 <your network settings>

3. Configure the network connection on the DM3730 Development Kit.

DM-37X# ifconfig usb0 <your network settings>

To use the device as a file-backed storage gadget, follow the steps below. This example

assumes that you have an ext2fs or FAT filesystem on an SD/MMC card attached to

/dev/mmcblk0p1.

NOTE: The card must not already be mounted. If the SD/MMC card is mounted, use the

command below to unmount it before proceeding.

DM-37x# umount /mnt/mmcblk0p1

1. Load the kernel module.

DM-37x# rmmod g_ether

DM-37x# modprobe g_file_storage file=/dev/mmcblk0p1

2. Connect the device to a Linux host PC.

3. Do whatever is necessary on your host PC to mount the newly inserted device. Most

modern distributions such as Fedora and Ubuntu will automatically detect the device

and treat it like a USB flash drive.

4. Transfer some files over to the device.

5. Disconnect the device from the host PC.

6. Mount the SD/MMC card and verify that the files were transferred.

DM-37x# mount /dev/mmcblk0p1 /mnt/mmcblk0p1

DM-37x# ls /mnt/mmcblk0p1

4.18 UART

For all versions of the Torpedo Launcher Baseboard included with the DM3730 Torpedo

Development Kit, RS-232 transceivers and connector cables are available for UARTB and

UARTC.

For the SDK2 Baseboard included with the DM3730 SOM-LV Development Kit, custom UART

transceivers can be connected to the High Density Breakout Board. By default, the serial ports

are enabled at 9600 baud and are available on /dev/ttyO1 (UARTC) and /dev/ttyO2 (UARTB).

/dev/ttyO0 is used for the console at 115200 baud.

1. To change the port speed, use the stty command. For example, to change UARTB to

115200, enter the command below.

DM-37x# stty 115200 < /dev/ttyO2

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 66

2. Attach the UART connector to J25/UARTB and use the echo command to send test

output.

DM-37x# echo "This is a test message" > /dev/ttyO2

3. Use the cat command to receive test data. NOTE: The cat command does not output

the data until it receives a carriage return.

DM-37x# cat /dev/ttyO2

4.19 I2C

The DM37x Linux BSP supports the i2cset and i2cget commands. For example, to enable

VPLL2 in the TPS65950, use the commands below.

DM-37x# i2cset -f -y 1 0x4b 0x8e 0x2e

DM-37x# i2cget -f -y 1 0x4b 0x8e

0x2e

DM-37x# i2cset -f -y 1 0x4b 0x91 0x5

DM-37x# i2cget -f -y 1 0x4b 0x91

0x05

The commands are reading/writing the PMIC at address group 0x4b and from the internal

registers 0x8e and 0x91.

4.20 SPI

The spi-test command uses the Aardvark I2C/SPI Activity Board25 as a SPI device. For

additional details, see the DM37x Linux BSP Software Test Plan included in the DM37x Linux

BSP download.

DM-37x# spi-test

Source code for spi-test can be obtained with the command below.

bash$./ltib -p spi-test -m prep

4.21 Real Time Clock

The Real Time Clock (RTC) in the DM3730 and AM3703 processor is not backed up by battery,

but the RTC in the PMIC is. The hwclock command writes between the two RTCs. The Torpedo

Launcher 2 Baseboard and later versions have a backup battery; however, by default the

DM37x Linux BSP does not enable charging.

25 http://www.totalphase.com/products/activity_board/

http://www.totalphase.com/products/activity_board/
http://www.totalphase.com/products/activity_board/

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 67

To enable charging at 25 uA, use the command below.

DM-37x# i2cset -f -y 1 0x4b 0x6d 0x1c

For more information, see the TPS65950 OMAP PMIC Technical Reference Manual.26

The commands below set the clock on the DM3730 and AM3703 processor RTC and then use

hwclock to write it into the PMIC. If BACKUP_BATT is powered, you can shut off

MAIN_BATTERY and the RTC will continue to run in the PMIC. Upon reboot, the system

automatically reads the value from the PMIC.

DM-37x# date 201202221649.15

Wed Feb 22 16:49:15 UTC 2012

DM-37x# hwclock -w

DM-37x# hwclock

Wed Feb 22 16:49:32 2012 0.000000 seconds

DM-37x#

#turn system off for a short time; the BSP will

#automatically use the PMIC stored RTC value when power returns.

#(after power up completes)

DM-37x# date

Wed Feb 22 16:51:09 UTC 2012

4.22 Analog-to-digital Converters

The TPS65950 has several analog-to-digital converters (ADCs) available for use. This sample

script will report the value of the backup battery and main battery.

#To read backup battery voltage, charging must be enabled

i2cset -f -y 1 0x4b 0x6d 0x1c

#Have to write to GPBR1, located at I2C address 0x49, register 0x91

i2cset -f -y 1 0x49 0x91 0x90

#Turn on the ADC, write 0x1 to CTRL1

i2cset -f -y 1 0x4a 0x00 0x01

#Enable ADCIN, write 0xff to SW1SELECT_LSB

i2cset -f -y 1 0x4a 0x06 0xff

#Enable ADCIN, write 0xff to SW1SELECT_MSB

i2cset -f -y 1 0x4a 0x07 0xff

#Enable VBAT prescaler, write 0x2 to BCICTL1.

i2cset -f -y 1 0x4a 0x97 0x02

#Start Conversion, write 0x20 to CTRL_SW1

26 http://www.ti.com/product/tps65950#technicaldocuments

http://www.ti.com/product/tps65950#technicaldocuments
http://www.ti.com/product/tps65950%23technicaldocuments

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 68

i2cset -f -y 1 0x4a 0x12 0x20

sleep 1

#ADC9

GPCH9_LSB=`i2cget -f -y 1 0x4a 0x49`

echo "GPCH9_LSB is $GPCH9_LSB"

GPCH9_MSB=`i2cget -f -y 1 0x4a 0x4a`

echo "GPCH9_MSB is $GPCH9_MSB"

#ADC12

GPCH12_LSB=`i2cget -f -y 1 0x4a 0x4f`

echo "GPCH12_LSB is $GPCH12_LSB"

GPCH12_MSB=`i2cget -f -y 1 0x4a 0x50`

echo "GPCH12_MSB is $GPCH12_MSB"

let ADC9=`printf %d $GPCH9_LSB`/64+`printf %d $GPCH9_MSB`*4

let ADC12=`printf %d $GPCH12_LSB`/64+`printf %d $GPCH12_MSB`*4

let VAL9=($ADC9*4399)/1000

let VAL12=($ADC12*5865)/1000

echo "ADC9 value is $ADC9 , $VAL9 millivolts Backup Battery

voltage"

echo "ADC12 value is $ADC12 , $VAL12 millivolts Main Battery Voltage"

Below is a sample execution of this script.

DM-37x# source adc-script

GPCH9_LSB is 0x80

GPCH9_MSB is 0x5a

GPCH12_LSB is 0x80

GPCH12_MSB is 0xa6

ADC9 value is 362 , 1592 millivolts Backup Battery voltage

ADC12 value is 666 , 3906 millivolts Main Battery Voltage

Below is a sample execution of this script after one hour.

DM-37x# source adc-script

GPCH9_LSB is 0xc0

GPCH9_MSB is 0x63

GPCH12_LSB is 0x00

GPCH12_MSB is 0x9e

ADC9 value is 399 , 1755 millivolts Backup Battery voltage

ADC12 value is 632 , 3706 millivolts Main Battery Voltage

4.23 BQ27000 Gas Gauge Support

To enable gas gauge support:

1. Enter the kernel configuration menu with ./ltib -c and select Configure the kernel.

2. Add support for 1-wire device drivers under Device Drivers > Dallas's 1-wire support.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 69

3. Add support for 1-wire master OMAP HDQ driver under Device Drivers > Dallas's 1-

wire support > 1-wire masters > OMAP HDQ driver.

4. Add support for 1-wire slave BQ27000 under Device Drivers > Dallas's 1-wire support

> 1-wire slaves > BQ27000 slave support.

5. Add support for the BQ27x00 family under Device Drivers > Power Supply Class

Support > BQ27x00.

6. Add support for the generic PDA power driver under Device Drivers > Power Supply

Class Support > Generic PDA/phone power driver.

To check the status of the gas gauge, look in the /sys/class/power_supply/bq27000-battery

directory.

DM-37x# cd /sys/class/power_supply/bq27000-battery

DM-37x# ls

capacity energy_now time_to_empty_avg

charge_full power time_to_empty_now

charge_full_design present time_to_full_now

charge_now status type

current_now subsystem uevent

cycle_count technology voltage_now

device temp

DM-37x# cat voltage_now

3798000

DM-37x#

The BQ27000 has specific requirements for learning the battery capacity. Please review the

latest TI documentation for the BQ27000 and the Logic PD design checklist application note for

your SOM for additional details:

■ AN 490 DM3730/AM3703 SOM-LV Design Checklist27

■ AN 493 DM3730/AM3703 Torpedo SOM Design Checklist28

■ AN 498 DM3730/AM3703 Torpedo + Wireless SOM Design Checklist29

4.24 Smart Reflex

SmartReflex is a power-management technique provided by TI for automatic control of the

operating voltage of a module to reduce active power consumption. SmartReflex achieves the

optimal performance/power trade-off for all devices across the technology.

The scripts below can be used to start and stop SmartReflex. SmartReflex is enabled by

default.

Start:

DM-37x# /etc/rc.d/init.d/smartreflex start

Stop:

27 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=696
28 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=586
29 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=637

http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=696
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=586
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=637
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=696
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=586
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=637

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 70

DM-37x# /etc/rc.d/init.d/smartreflex stop

4.25 Run/Idle/Suspend

With power states such as run, idle, suspend, and off, there is always a balance between the

power being saved and the amount of time it takes to go into and out of those states.

Typically, the lowest power states take the longest time to wake up. Tuning the timing of

transition into various states depends greatly on the system application the OS is designed to

fit into. The power states below can be utilized with the DM37x Linux BSP.

■ Run – The kernel is in the run state when the kernel scheduler finds a job to do.

■ Idle – The kernel is in the idle state when the kernel scheduler doesn’t have a job to

do. If there are no background tasks being performed and the system is waiting at the

prompt, then the kernel is most often in the idle state.

■ Suspend – The suspend state can be directed by pressing the S2 button on the

DM3730 Development Kit baseboard. The DM37x Linux BSP can also enter suspend

mode from the command line using the command below.

DM-37x# echo mem > /sys/power/state

To exit the suspend state, press the S2 button, tap the LCD screen, or type a key at

the shell prompt.

NOTE: The backlight has a timeout independent of the run/idle/suspend power modes.

For more information, please see the appropriate Logic PD thermal management white paper

for your SOM:

■ WP 540 DM3730/AM3703 SOM-LV Thermal Management30

■ WP 491 DM3730/AM3703 Torpedo SOM Thermal Management31

■ WP 530 DM3730/AM3703 Torpedo + Wireless SOM Thermal Management32

4.26 Virtual Files

Linux is built on the foundation of a virtual filesystem. That is, the filesystem contains program

files, data files, and virtual files. Virtual files are those files that don’t actually store data in

any memory, but rather are interfaces into a driver. Most Linux commands that operate on

files also operate on virtual files.

4.26.1 echo Command and ">" Operator

Consider the following example. The ">" character is used to direct data to a file. In this case,

we use it to direct the output of the echo command to the virtual file /dev/console. The

/dev/console driver manages the interface to the UART terminal.

DM-37x# echo “virtual file test” > /dev/console

virtual file test

30 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=717
31 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=605
32 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=656

http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=717
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=605
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=656
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=717
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=605
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=656

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 71

DM-37x#

By directing the output of the echo command to the virtual file /dev/console, we see the

output of the echo command displayed on the terminal.

4.26.2 /sys/kernel/debug Directory

The /sys/kernel/debug directory contains a vast list of virtual files, all of which are intended to

provide debug information. It is beyond the scope of this manual to describe every file;

however, a few examples are provided in the sections below.

To see a description of what a specific virtual file may contain, please consult the open source

community, post a question to the Logic PD TDG forum, and/or search for the virtual file in the

source code.

4.26.2.1 Clock Tree

There are many clocks running in the CPU, and developing or debugging a driver may require
knowledge of the frequencies to which these clocks are set. The /sys/kernel/debug/clock

directory is the root of the clock tree. The virtual files are constructed in a tree structure, just
as the clock tree is constructed in the CPU. To traverse the clock tree, see the CPU reference
manual.

In the example below, we traverse the clock tree and display the rate of clocks DPLL1, DPLL2,
DPLL3, DPLL4, and DPLL5.

DM-37x# cat

/sys/kernel/debug/clock/virt_26m_ck/osc_sys_ck/sys_ck/dpll1_ck/rate

600000000

DM-37x# cat

/sys/kernel/debug/clock/virt_26m_ck/osc_sys_ck/sys_ck/dpll2_ck/rate

260000000

DM-37x# cat

/sys/kernel/debug/clock/virt_26m_ck/osc_sys_ck/sys_ck/dpll3_ck/rate

400000000

DM-37x# cat

/sys/kernel/debug/clock/virt_26m_ck/osc_sys_ck/sys_ck/dpll4_ck/rate

864000000

DM-37x# cat

/sys/kernel/debug/clock/virt_26m_ck/osc_sys_ck/sys_ck/dpll5_ck/rate

120000000

4.26.2.2 Pin Mux

Below is an example in which we view the pin mux of the CPU. Specifically, we display the

current configuration of the sys_boot0 and cam_d7 pins.

DM-37x# cat /sys/kernel/debug/omap_mux/sys_boot0

name: sys_boot0.gpio_2 (0x48002a0a/0x9da = 0x011c), b ah26, t NA

mode: OMAP_PIN_INPUT_PULLUP | OMAP_MUX_MODE4

signals: sys_boot0 | NA | NA | dss_data18 | gpio_2 | NA | NA |

safe_mode

http://support.logicpd.com/TDGForum.aspx

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 72

DM-37x# cat /sys/kernel/debug/omap_mux/cam_d7

name: cam_d7.cam_d7 (0x48002124/0x0f4 = 0x0100), b l28, t NA

mode: OMAP_PIN_INPUT | OMAP_MUX_MODE0

signals: cam_d7 | NA | NA | NA | gpio_106 | NA | NA | safe_mode

The output above shows the GPIO number each pin is associated with, the pull up state, the
configuration mode, etc. See the CPU reference manual pin mux section for full details of each
field.

4.26.2.3 General Purpose Bus Configuration

In the example below, we use the virtual file debug directory to view the GPMC configuration
of each chip select.

DM-37x# cat /sys/kernel/debug/omap_gpmc

CONFIG: 00000210

STATUS: 00000b01

IRQSTATUS: 00000000

IRQENABLE: 00000000

CS0: 00001800 00090900 00090902 07020702

 0008080a 000002cf 00000f70

CS1: 00001000 00080801 00000000 08010801

 00080a0a 03000280 00000f48

CS2: 6a411213 000c1503 00050503 0b051506

 020e0c15 0b0603c3 00000f50

CS3: 00001210 00131000 001f1f01 10030e03

 010f1411 80030600 00000f58

See GPMC register definition section in the CPU reference manual for further details.

4.27 Shut Down Linux System

To properly shut down the DM3730 Development Kit while running the Linux OS, use either

the poweroff or reboot command. It is important to use one of these commands when shutting

down the system, as they ensure any cached data is flushed out to the hardware prior to

removing power. This is most important with non-volatile memory devices. If the cache is not

flushed, there is a potential to corrupt the data in that memory device.

4.28 Additional Peripheral Test Information

Additional information on testing peripherals and device drivers can be found in the

DM37x Linux BSP Software Test Plan included in the DM37x Linux BSP download. Please post

a question to the Logic PD TDG forum for additional details.

4.29 CPU Benchmarks

Adding the miscellaneous benchmark package will add dhrystone, whetstone, and linpack

benchmark tools to the /usr/bin sub-directory.

To set CONFIG_PKG_MISC_BENCHMARKS=y using the LTIB configuration menu, follow the

steps below.

1. At the bash prompt, enter the following command to start the LTIB menu system.

http://support.logicpd.com/TDGForum.aspx

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 73

bash$./ltib -c

2. In the main menu, select Packages list.

3. In the Package list window, select miscellaneous benchmarks.

4. Finally, save your changes by exiting each sub menu. Wait for LTIB to build your

images.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 74

Below are example commands for running the miscellaneous benchmarks.

DM-37x# cd /usr/bin

DM-37x# dhrystones

Dhrystone Benchmark, Version 2.1 (Language: C)

Program compiled without 'register' attribute

Please give the number of runs through the benchmark: 10000000

Execution starts, 10000000 runs through Dhrystone

Execution ends

…

Str_2_Loc: DHRYSTONE PROGRAM, 2'ND STRING

 should be: DHRYSTONE PROGRAM, 2'ND STRING

Microseconds for one run through Dhrystone: 1.0

Dhrystones per Second: 1039861.4

DM-37x# whetstones 5000

Loops: 5000, Iterations: 1, Duration: 3.77607 sec.

C Converted Double Precision Whetstones: 132.4 MIPS

DM-37x# linpack

Rolled Double Precision Linpack

Rolled Double Precision Linpack

 norm. resid resid machep x[0]-1 x[n-

1]-1

 1.7 7.41628980e-14 2.22044605e-16 -1.49880108e-14 -

1.89848137e-14

 times are reported for matrices of order 100

 dgefa dgesl total kflops unit ratio

 times for array with leading dimension of 201

 0.05 0.01 0.06 10987 0.18 1.12

 0.06 0.00 0.06 10987 0.18 1.12

 0.05 0.00 0.05 12556 0.16 0.98

 0.03 0.00 0.03 26634 0.08 0.46

 times for array with leading dimension of 200

 0.02 0.00 0.02 29297 0.07 0.42

 0.02 0.00 0.02 29298 0.07 0.42

 0.02 0.00 0.02 29297 0.07 0.42

 0.02 0.00 0.02 33805 0.06 0.36

Rolled Double Precision 26634 Kflops ; 10 Reps

DM-37x#

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 75

4.30 Use Peekpoke to Examine/Modify Registers

LTIB has the peekpoke package included. Peekpoke allows read/write access to physically

addressable memory locations, which include not only DDR RAM, but also NOR flash, SRAM,

and any memory-mapped I/O registers.

Below is an example of how to read the DM3730/AM3703 processor

CONTROL.CONTROL_IDCODE[31:0] register.

DM-37x# peekpoke -c 1 -l -r 0x4830A204

4830a204 /l -> 2b89102f

DM-37x#

The command below will cause a software reset by setting the global software reset control bit

in the PRM_RSTCTRL register.

DM-37x# peekpoke -l -w 0x48307250 0x2

Texas Instruments X-Loader 1.42 BSP-dm37x-2.3-2 for dm3730logic (2013-

01-16 14:43:47)

DRAM: 256MB (ProductID defined)

Starting U-boot on MMC

Reading boot sector

454256 bytes read from MMC to 80400000

U-Boot 2011.06 BSP-dm37x-2.3-2 (Jan 16 2013 - 14:42:37)

OMAP3630/3730-GP ES2.1, CPU-OPP2, L3-200MHz, Max CPU Clock 1 Ghz

Logic DM37x/OMAP35x reference board + LPDDR/NAND

…

On your Linux host PC, the command below will extract the source for the peekpoke package

in the rpm/BUILD/peekpoke-1 sub-directory.

bash$./ltib -p peekpoke -m prep

4.31 Filesystem Commands

This section provides useful filesystem commands.

4.31.1 df Command

The df command reports how much free space is available for each mount.

DM-37x# df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/root 57479 36964 17618 68% /

tmpfs 120412 48 120364 0% /dev

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 76

/dev/mmcblk0p1 1961952 61632 1900320 3% /mnt/mmcblk0p1

shm 120412 0 120412 0% /dev/shm

rwfs 512 0 512 0% /mnt/rwfs

DM-37x#

4.31.2 cat /proc/mtd Command

The cat /proc/mtd command displays the flash partition table from the command line.

DM-37x# cat /proc/mtd

dev: size erasesize name

mtd0: 00080000 00020000 "x-loader"

mtd1: 001a0000 00020000 "u-boot"

mtd2: 00060000 00020000 "u-boot-env"

mtd3: 00500000 00020000 "kernel"

mtd4: 01400000 00020000 "ramdisk"

mtd5: 1e480000 00020000 "fs"

DM-37x#

4.31.3 flash_eraseall Command

The flash_eraseall command erases a filesystem partition. In the example below, the U-Boot

environment variables are erased. Care must be taken when running from a YAFFS root

filesystem in NAND to not erase the root partition - this will cause the system to crash.

DM-37x# flash_eraseall /dev/mtd2

Erasing 128 Kibyte @ 60000 -- 100% complete.

DM-37x#

4.31.4 badblocks Command

The badblocks command searches a device for bad blocks. In the example below, the

filesystem NAND partition is searched for bad blocks.

DM-37x# badblocks -v /dev/mtdblock5

Checking blocks 0 to 496127

Checking for bad blocks (read-only test): done

Pass completed, 0 bad blocks found.

DM-37x#

4.32 Using Linux Voltage and Current Regulator Framework

The TPS65950 regulates a variety of power domains which are made available through the

Voltage and Current Regulator Framework.

The regulator used on the DM3730 modules can source different power levels and are

addressed through the I2C1 bus. The Linux Voltage and Current Regulator Framework provide

filesystem level access to read the settings of these regulators.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 77

Table 4.32:AM/DM37xx Regulator Voltages

Regulator Path Name
Min

(microvolts)
Max

(microvolts)
Voltage

(microvolts)

twl_reg.17/regulator/regulator.2 VUSB1V5 1500000

twl_reg.18/regulator/regulator.3 VUSB1V8 1800000

twl_reg.19/regulator/regulator.4 VUSB3V1 3100000

twl_reg.0/regulator/regulator.5 vdd_mpu_iva 600000 1450000

twl_reg.1/regulator/regulator.6 vdd_core 600000 1450000

twl_reg.6/regulator/regulator.7 VMMC1 1850000 3150000

twl_reg.3/regulator/regulator.8 VDAC 1800000 1800000

twl_reg.5/regulator/regulator.9 VDVI 1800000 1800000

twl_reg.7/regulator/regulator.10 VMMC2 1850000 3150000

twl_reg.9/regulator/regulator.11 VAUX1 3000000 3000000

twl_reg.12/regulator/regulator.12 VAUX3 2800000 2800000

twl_reg.13/regulator/regulator.13 vaux4 1800000 1800000

To read the names from Linux:

DM-37x# cat /sys/devices/platform/omap/omap_i2c.1/i2c-1/1-

004b/twl_reg.6/regulator/regulator.7/name

VMMC1

DM-37x#

To read the current voltage for a given regulator:

DM-37x# cat /sys/devices/platform/omap/omap_i2c.1/i2c-1/1-

004b/twl_reg.6/regulator/regulator.7/microvolts

3150000

DM-37x#

To read the minimum voltage setting for given regulator:

DM-37x# cat /sys/devices/platform/omap/omap_i2c.1/i2c-1/1-

004b/twl_reg.6/regulator/regulator.7/min_microvolts

3150000

DM-37x#

To read the maximum voltage setting for a given regulator:

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 78

DM-37x# cat /sys/devices/platform/omap/omap_i2c.1/i2c-1/1-

004b/twl_reg.6/regulator/regulator.7/max_microvolts

3150000

DM-37x#

To check the state of the regulator:

DM-37x# cat /sys/devices/platform/omap/omap_i2c.1/i2c-1/1-

004b/twl_reg.6/regulator/regulator.7/state

enabled

DM-37x#

4.33 Reading Temperature Sensor

The internal temperature sensor is not necessarily calibrated and shows the temperature of

the die, not the ambient temperature. Temperature ranges may vary with processor voltage

and load.

Read the temperature of the processor die:

DM-37x# cat /sys/devices/platform/temp_sensor/Celsius

27.7

DM-37x#

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 79

5 Boot Kernel from TFTP Server and Root Filesystem from
NFS Server

This section explains how to configure both a Ubuntu 12.04 host PC and a DM3730/AM3703

target platform to boot the DM37x Linux BSP kernel from a TFTP server and the DM37x Linux

BSP root filesystem from a network file system (NFS) server.

Having the kernel located on a TFTP server on the host PC allows developers to quickly change

the kernel on their Linux host PC and test it on the DM3730/AM3703 target platform by simply

rebooting the target platform. Other options for testing an updated the kernel would be to

copy the updated kernel to an SD card or burn it into flash. These options work, but take more

time.

NFS allows the host PC to share directories and files with the target platform over a network.

Developers can use NFS to quickly change their application and test it on the target platform

when the root filesystem is located in the host PC. Updates to an NFS can be seen by the

target immediately and do not require the system to be reset.

This example will use the Virtual Machine SDK for the DM37x Linux BSP as the starting point

for the Ubuntu 12.04 environment. These steps have been tested using the Virtual Machine

SDK for the DM37x Linux BSP v2.4-2 and the DM37x Linux BSP v2.4-2. Other versions may

require slight changes to the steps below.

5.1 Set Up TFTP Server in Ubuntu 12.04

This section describes the steps needed to install and run the TFTP server in Ubuntu 12.04.

1. Install a TFTP server in Ubuntu 12.04.

bash$ sudo apt-get install xinetd tftpd tftp

2. Create the TFTP configuration file.

bash$ sudo gedit /etc/xinetd.d/tftp

3. Add the following content to the TFTP configuration file.

service tftp

{

protocol = udp

port = 69

socket_type = dgram

wait = yes

user = nobody

server = /usr/sbin/in.tftpd

server_args = /tftpboot

disable = no

}

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 80

4. Create the /tftpboot folder. This must match the folder assigned to server_args in the

TFTP configuration file in the step above.

bash$ sudo mkdir /tftpboot

bash$ sudo chmod -R 777 /tftpboot

bash$ sudo chown -R nobody /tftpboot

5. Restart the xinetd service.

bash$ sudo /etc/init.d/xinetd restart

Now the TFTP server is up and running.

6. Copy the kernel build into /tftpboot.

bash$ cp ~/logic/Logic_BSPs/Linux_3.0/REL-ltib-DM3730-2.4-

2/rootfs/boot/uImage /tftpboot/uImage

5.2 Setup NFS Server in Ubuntu 12.04

This section describes the steps needed to install and run the NFS server in Ubuntu 12.04. In

addition, steps are provided that explain how to move the files from the build root filesystem

to the NFS root filesystem.

1. Set up a directory for the NFS server.

bash$ sudo mkdir -p /opt/nfs-exports/ltib-omap

2. Populate the ltib-omap directory with the content of the root filesystem directory in

the LTIB tree.

bash$ sudo tar -C ~/logic/Logic_BSPs/Linux_3.0/REL-ltib-DM3730-2.4-

2/rootfs -cf - . | sudo tar -C /opt/nfs-exports/ltib-omap -xf –

3. Edit the/etc/exports configuration file.

bash$ sudo gedit /etc/exports

4. Add the following line to the end of the /etc/exports configuration file. Both lines below

must appear as a single line in the /etc/exports configuration file.

/opt/nfs-exports/ltib-omap

192.168.120.0/24(rw,async,insecure,no_root_squash,no_subtree_check)

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 81

This tells the NFS server that anyone in 192.168.120.0, netmask 255.255.255.0 can

mount /opt/nfs-export/ltib-omap. You can change the IP range/netmask bits to

whatever you need; the options for doing so are described in more detail here.
33

5. Restart the nfs-kernel-server service.

bash$ sudo /etc/init.d/nfs-kernel-server restart

6. Also after making changes to /etc/exports in a terminal, you must export all

directories using the following command.

bash$ sudo exportfs -a

5.3 Set Up the DM3730/AM3703 Target Platform

This section explains how to set up the DM3730/AM3703 development platform to boot the

DM37x Linux kernel from the TFTP server and use the DM37x Linux root filesystem on the NFS

server located on the Ubuntu 12.04 Linux host PC.

1. Set up the U-Boot environment to an initial state.

OMAP Logic # env default -f; setenv preboot

2. Get a DHCP IP address and set the ipaddress variable.

OMAP Logic # run get_dhcp_address

3. Set the IP address of the TFTP and NFS server to access the kernel and root

filesystem. In this example, the TFTP and NFS server is at 192.168.120.53. This IP

address must be the same as the one on your Linux host PC running the TFTP and NFS

servers. At this time, both the TFTP and NFS services must reside on the same Linux

host PC.

OMAP Logic # setenv serverip 192.168.120.53

4. Set the IP address of the DM3730/AM3703 target system. The IP address in this

example was set to 192.168.120.64.

OMAP Logic # setenv ipaddr 192.168.120.64

5. Configure U-Boot to load the kernel from a TFTP server.

OMAP Logic # setenv kernel_location tftp

6. Configure U-Boot to find the kernel. Note that it does not have a leading slash but

requires a trailing slash. If you have the kernel in the root of the TFTP server's

33 http://linux.die.net/man/5/exports

http://linux.die.net/man/5/exports
http://linux.die.net/man/5/exports

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 82

directory (i.e., /tftpboot), then setenv tftpdir suffices. If it is in a subdirectory like

/tftpboot/foo/bar, then you'll need setenv tftpdir foo/bar/.

OMAP Logic # setenv <tftpdir>

7. Configure U-Boot for the root filesystem on an NFS.

OMAP Logic # setenv rootfs_location nfs; setenv rootfs_type nfs

8. Set the directory in the NFS server to use the root filesystem.

OMAP Logic # setenv nfsrootpath /opt/nfs-exports/ltib-omap

NOTE: This directory must match the directory used in Section 5.2.

9. Save the U-Boot environment variables for future boots.

OMAP Logic # saveenv

10. Execute the following command to boot the kernel from the TFTP server. The root

filesystem will now point to the one located on the Linux host PC at the location

defined at nfsrootpath.

OMAP Logic # run nfsboot

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 83

6 Application Development

This section describes some application development fundamentals for the Linux BSP. There

are an infinite number of approaches to developing applications for embedded Linux. However,

the following fundamental constraints on development must be taken into consideration:

■ The application must be linked against the current kernel glib runtime library.

■ Building the application should be cross compiled on a host PC and then transferred to

the target device. Theoretically, compiling and linking can take place on the target

device. However, there are so many more resources available on a host PC (namely

disk space and speed) that make cross compiling using the desktop the preferred

method.

■ A method for debugging must be established. At times, this could simply be printf()

statements sprinkled throughout the code. However, faster and more convenient

methods consist of a debugger application capable of displaying source and setting

break points.

6.1 "Hello World” Application Example

6.1.1 Build “Hello World” Application

Before starting to build the "Hello World" application, be sure you can build the BSP using the

default configuration described in Section 2.4.

1. Unpack the “Hello World” application. Since the application is not part of Logic PD’s

DM37x Linux BSP distribution, a network connection on your host PC is necessary to

download it from the global package pool. LTIB will automatically detect when a

package is not available in the local BSP and download it if necessary.

2. Download the “Hello World” source package and install it in /rpm/BUILD/helloworldx-x.

bash$./ltib -p helloworld -m prep

3. Next, build and deploy the application with the command below.

bash$./ltib -p helloworld -m scbuild && ./ltib -p helloworld -m

scdeploy

The “Hello World” application is a simple example. By reviewing the source and the Makefile,

you can see what is needed for an application to compile and link against the kernel.

NOTE: Alternatively, you can use the./ltib -m shell command to switch the environment to the

environment LTIB uses when performing the build. From the LTIB shell, you can build your

application as if your environment was set up specifically for your "Hello World" application.

6.1.2 Transfer “Hello World” Application to Root Filesystem

In the build example above, the second part of the last command (./ltib -p helloworld -m

scdeploy) will package up the “Hello World” application in the root filesystem, along with all

the other applications and packages already in the filesystem. The location of the “Hello

World” application is in /usr/bin. If booting from SD and using a RAM-based root filesystem,

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 84

simply copying rootfs.ext2.gz.uboot from the LTIB build directory to the SD card will include

the “Hello World” application.

6.1.2.1 Transfer “Hello World” Application using TFTP

With the SOM at the Linux prompt, the “Hello World” application can be transferred to the

SOM and executed without the need to copy over the entire root filesystem. There are

countless ways to transfer the executable to the SOM. For this example, we will use TFTP.

There are many applications available to serve TFTP files. On a Linux desktop, atftpd is a

popular TFTP server daemon.

1. Start by copying rpm/BUILD/helloworld-x.x to the TFTP server directory. This will

make the “Hello World” application available to TFTP clients.

2. On the SOM, bring up Ethernet using the information provided in Section 4.2, 4.12, or

4.13.1, depending on your hardware.

3. With Ethernet running, use the command below at the SOM Linux prompt to transfer

the file over to the SOM in the current directory. Be sure to replace <server ip> with

the IP address of the TFTP server.

DM-37x# tftp -l hello -g <server ip>

4. Since TFTP does not preserve the file permissions, the executable permission must be

set. Use the command below to set the “Hello World” application permissions to be

executable by all.

DM-37x# chmod ugo+x hello

5. Execute the “Hello World” application by typing the application name at the prompt.

DM-37x# ./hello

Hello world

DM-37x#

6.1.3 Run “Hello World” Application

Execute the “Hello World” application by typing the application name at the prompt.

DM-37x# hello

Hello world

DM-37x#

Note that the file can also be executed using /usr/bin/hello. However, since /usr/bin is in the

default $PATH environment variable, the full path does not need to be specified.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 85

6.2 GPS Demo Application Example

6.2.1 Build GPS Demo Application

The Logic PD DM37x Linux BSP includes a "Hello World"-like example application that

demonstrates how to write an application using the GPS unit. The following steps explain how

to unpack the source code, view and modify (prep) the package, and build.

NOTE: The GPS feature was relatively new at the time this document was written. If you are

using the DM37x Linux BSP version 2.2-2 or older, please post a question to the Logic PD

TDG forum to obtain the package or simply download a newer version of the DM37x Linux BSP

(see Section 2 for a link).

1. Prep the GPS demo application source package and install it in /rpm/BUILD/testGPS-

x.x.

bash$./ltib -p gpsdemo -m prep

2. Next, build and deploy the application.

bash$./ltib -p gpsdemo -m scbuild && ./ltib -p gpsdemo -m scdeploy

The GPS demo application is a simple example to display GPS data. By reviewing the source

and the Makefile, you can see what is needed to support GPS in your application.

NOTE: As an alternative approach to the above commands, you can enter the./ltib -c

command, select “Package list,” and choose the “GPS demo” package to include the GPS demo

application in your build. This will not provide source code for you to view and modify;

however, it will provide a runtime binary in your filesystem for you to use. See Section 2.5 for

more information on the ./ltib -c command and on including packages in your build.

6.2.2 Transfer GPS Demo Application to Target

The GPS demo application is included in the root filesystem using the LTIB scdeploy option.

To transfer the GPS demo application to the target, you can update the root filesystem on

your target using the procedures in Section 2.4.2. You can also follow the "Hello World"

example in Section 6.1.2 to push only the GPS demo image to the target.

6.2.3 Run GPS Demo Application

1. With the GPS demo application on your target, begin by adding the GPS module to the

kernel.

DM-37x# modprobe gps_drv

[124.591705] (stk) :sysfs entries created

[124.596252] (stk) : debugfs entries created

DM-37x#

http://support.logicpd.com/TDGForum.aspx

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 86

2. Start the shared transport utility. Because the Bluetooth and GPS share the same

interface to the wireless module, the shared transport utility manages traffic destined

for Bluetooth or GPS.

DM-37x# /home/root/wl12xx/uim &

[1] 705

DM-37x#

3. Configure Log files. The logging is enabled by default to aid in development and

testing. To keep the logging, skip step 3. For users who plan to use GPS for extended

period of time, having logging enabled is not recommended, because it will fill up the

file system. To disable logging:

Edit /system/etc/gps/config/pathconfigfile.txt

Locate the following entries and change them to the following to disable logging

SESSION_LOG_CONTROL 0
SENSOR_CONTROL 0

4. Start the navd service. The navd service manages the GPS.h Application Programming

Interface (API) to forward GPS commands and handles updates to the GPS application.

NOTE: Disregard the Could not set new working dir warning. This warning does not

hinder the GPS operation.

DM-37x# navd --android_log NAVD -p3 \

-nav\"-c/system/etc/gps/config/pathconfigfile.txt\" &

[2] 706

cmd line navd --android_log NAVD -p3 -nav"-

c/system/etc/gps/config/pathconfigfile.txt"

MCP | initializing sighandler

could not set new working dir: No such file or directoryMCP | main |

starting...

Note: this task requires root privileges

5. Finally, launch the GPS demo application.

DM-37x# gpsdemo

[165.513885] (stc): st_register(9)

[165.517761] (stc): chnl_id list empty :9

[165.522247] (stk) : st_kim_start

[165.631225] (stk) :ldisc_install = 1uim: Inside mainuim: Inside

st_uart_configuim:install set to 1

uim:opening /dev/ttyO1, while already open

uim:

[165.648864] (stc): st_tty_open cleanup

uim: In

[165.653625] (stk) : line discipline installed side set_baud_rateuim:

set_baud_rate() done

uim

[165.663116] (stk) :Logic_TIInit_10.6.15.bts: Installed N_TI_WL Line

displine

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 87

The GPS demo application will display GPS data continuously on the terminal. Use Ctrl+C to

exit the application.

NOTE: The GPS demo application works best with a terminal width of 103 characters.

NOTE: The GPS antenna must have a clear, unobstructed view of the sky. If the GPS is

unable to get a lock, reorient the antenna for better GPS reception.

6.3 Debug with GNU Debugger

The GNU debugger (GDB) is included in the DM37x Linux BSP tool set. Below is an example of

how to use the GDB to debug the “Hello World” sample application.

6.3.1 Configure Build Options

When debugging an application, the compiled application must include a symbol table so the

debugger can identify memory locations by the variable names indicated in the source. For the

“Hello World” application, we need to tell the compiler to include the symbol table in the

output file.

In addition, it is far simpler to trace through a program when the compiler has not optimized

the result assembly. The compiler has many optimizations that, when employed, often show

an execution path that does not follow the C source (or whatever language may be used for

the source). We need to tell the compiler to turn off optimizations before debugging.

For the “Hello World” example, we need to use a text editor to edit the compiler options in

rpm/BUILD/helloworld-x.x/Makefile. In this file, locate the line starting with CFLAGS=. This

line sets the compiler options and there will likely be one or more options already there. We

will need to be sure to include the options -ggdb and -O0. The first option will include

debugging symbols, while the second option turns off compiler optimizations. With the file

updated, the “Hello World” application can be built using the procedures in Section 6.1.1.

6.3.2 Set Up GDB

With the image built and located on the SOM, we can start the GDB.

1. Begin by bringing up the Ethernet interface as indicated in Sections 4.2, 4.12, or 4.13

depending on your hardware. Note the SOM IP address.

2. At the Linux prompt on the SOM, enter the command below.

DM-37x# gdbserver :3000 hello

Process hello created; pid = 736

Listening on port 3000

The GDB server manages the remote debugging session on the SOM. The user

interface for debugging takes place on a host PC with the “Hello World” source and the

GDB. The :3000 argument indicates the Ethernet port number to use. The port

number is somewhat arbitrary, as long as the port number is unique and common

between the GDB server and GDB debugger on the host PC.

At this point, the “Hello World” application is ready with the program counter stopped

at the first line of the source. All other processes on the SOM continue to run.

3. From the “Hello World” source code directory on your host PC, start the GDB with the

command below.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 88

Ubuntu: /opt/CodeSourcery/Sourcery_G++_Lite/bin/arm-none-linux-gnueabi-

gdbtui

You will see two windows open in your Linux terminal. The upper window will show the

source code currently being debugged. The lower window will show the GDB command

history.

The GDB command set is large; typing help at the GDB prompt can help narrow down

what command you need to use when debugging your programs. Additional

information on GDB can be found on the GDB: The GNU Project Debugger wiki page.34

4. Use the command below at the GDB prompt to establish the connection to the GDB

server on the SOM, where <ip> is the IP address of the SOM.

(gdb) target remote <ip>:3000

Remote debugging using <ip>:3000

0x400fb7b0 in ?? ()

(gdb)

5. Next, load the “Hello World” symbol file at the GDB prompt.

(gdb) symbol-file hello

Reading symbols from

/media/extpart_sdb5_500GB/svn_sandbox/eps_svn/software/prod

ucts/linux/LTIB/trunk/ltib-20101216/rpm/BUILD/helloworld-

1.1/hello...done.

(gdb)

Now the symbols are loaded.

6. Use the GDB list command to update the top window with the current location of the

program counter in the “Hello World” source code.

(gdb) list

(gdb)

You should now see the “Hello World” source code displayed in the top window.

NOTE: The “Hello World” application is small, so the entire source can be displayed.

For larger applications, however, the upper window can be used to display a portion of

that application source code. The GDB list command by itself will display the source at

the current program counter. You can use the list <file>:<line> command, where

<file> is the file name you want displayed and <line> is the line number you want to

show in the window.

7. At this point, the “Hello World” application has not started executing. To demonstrate

the use of GDB, we will set a break point just after printing “hello world” to the screen.

At the GDB prompt, set a break point and have it indicated on the upper window.

(gdb) break hello.c:6

34 http://www.gnu.org/software/gdb/documentation/

http://www.gnu.org/software/gdb/documentation/
http://www.gnu.org/software/gdb/documentation/

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 89

Breakpoint 1 at 0x8438: file hello.c, line 6.

8. Next, start the “Hello World” application and verify it stops at line 5.

(gdb) c

Continuing.

Breakpoint 1, main () at hello.c:6

The command window indicates the program has stopped at line 6. Likewise, the top

window shows line 6 highlighted, which indicates the stopped state of the program

counter.

If we had variables in our “Hello World” application, we could use the GDB print

command to display the content of those variables. The values of variables within the

lexical environment of the current stack frame can be displayed, plus any global

variables.

At this point, you may notice the “Hello World” string is not displayed on the Linux

terminal of the SOM. But, the program counter shows that the printf(“hello world”)

statement has been executed. This occurs because the STDIO device used by the

printf() function has not flushed its buffer to the terminal. The strings printed to the

terminal will be flushed when the STDIO device is explicitly flushed, closed, or the

application program terminates. At that point, all the printf() text remaining in the

STDIO buffer will be sent to the Linux terminal display.

9. To let the “Hello World” application continue, use the GDB c command again.

(gdb) c

Continuing.

Program exited normally.

As noted earlier, with the “Hello World” application running to completion, you will see

the SOM Linux terminal show “hello world” and the GDB server will report the status of

the application.

hello world

Child exited with retcode = 0

Child exited with status 0

GDBserver exiting

DM-37x#

10. Finally, use the quit command on the host PC to end the GDB session.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 90

7 Loadable Module Development

There will likely be cases where you want to create a driver to be used by the Linux kernel.

This section describes how to create a “Hello World” loadable module that is linked into the

kernel at run time.

7.1 “Hello World” Module

It is beyond the scope of this document to explain how to write a driver for the Linux kernel.

However, you can see how a module is created, built, installed, and removed by using the

“Hello World” module.

7.1.1 Build “Hello World” Module

1. Begin by unpacking the hello mod application using the command below from the BSP

directory. This will download the source and unpack it in the rpm/BUILD/hello_mod-x

directory.

bash$./ltib -p hello_mod -m prep

2. Next, build the module.

bash$./ltib -p hello_mod

The resulting module is included in the root filesystem. From the BSP build directory,

the module can be found in rootfs/lib/modules/<kernel version/misc/modexample.ko.

The built module can be loaded on the SOM by copying the root filesystem to the SOM

and restarting, or by using TFTP (see the “Hello World” application example in Section

6.1).

7.1.2 Run “Hello World” Module

1. With the “Hello World” module (named modexample) located in the root filesystem in

/lib/modules/<kernel version>/misc, the module can be loaded using the modprobe

command.

DM-37x# modprobe modexample

[102054.804199] say hello

Our “Hello World” module does not do much more than print say hello. However, you

can see its operation upon loading the module.

2. Verify the module is loaded.

DM-37x# lsmod

Module Size Used by

modexample 787 0

g_ether 57800 0

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 91

3. Unload the module.

DM-37x# rmmod modexample

[102241.063415] wave goodbye

By removing the module, we see the module print wave goodbye.

4. Verify the module is no longer loaded.

DM-37x# lsmod

Module Size Used by

g_ether 57800 0

DM-37x#

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 92

8 Cameras and DSP (DVSDK)

The DSP requires software and hardware overhead to operate and is not enabled by default.

This section explains how to enable the DSP in your build. The steps in this section assume

you have completed a successful build using the default configuration described in Section 2.4.

Note: Systems designed to use the DSP drivers may not properly function following

suspend/resume states. Customers looking for both DSP support and suspend/resume

functionality can contact Logic PD for additional design support.

8.1 Prepare Build Tools

Using the DSP requires the Code Generation Tools (CGT) provided by Texas Instruments (TI).

1. First, verify you can build the DM37x Linux BSP by following the steps outlined in

Section 2.4.

2. Next, download version 6.1.14 of the CGT from one of the TI links below. NOTE: You

must have a my.TI account set up in order to access these downloads.

□ http://software-dl-

1.ti.com/dsps/forms/self_cert_export.html?prod_no=ti_cgt_c6000_6.1.14_setup_l

inux_x86.bin&ref_url=http://software-

dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/codegen/C6000/6.1.14

□ https://www-

a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm

Other versions may or may not work with your BSP and Logic PD may not be able to

provide support if a different version is used. The above links also include additional

documentation on the TI code generation tools.

3. Once downloaded, use the commands below to run the installer. Follow the prompts to

install CGT to the default directory /opt/TI/C6000CGT6.1.14/.

bash$ chmod a+x ~/Downloads/ti_cgt_c6000_6.1.14_setup_linux_x86.bin

bash$ sudo ~/Downloads/ti_cgt_c6000_6.1.14_setup_linux_x86.bin

4. Configure LTIB to build the DVSDK packages.

a. Configure LTIB. See Section 2.5.4 for more information.

bash$./ltib -c

http://www.logicpd.com/contact/inquiry/
http://software-dl-1.ti.com/dsps/forms/self_cert_export.html?prod_no=ti_cgt_c6000_6.1.14_setup_linux_x86.bin&ref_url=http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/codegen/C6000/6.1.14
http://software-dl-1.ti.com/dsps/forms/self_cert_export.html?prod_no=ti_cgt_c6000_6.1.14_setup_linux_x86.bin&ref_url=http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/codegen/C6000/6.1.14
http://software-dl-1.ti.com/dsps/forms/self_cert_export.html?prod_no=ti_cgt_c6000_6.1.14_setup_linux_x86.bin&ref_url=http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/codegen/C6000/6.1.14
http://software-dl-1.ti.com/dsps/forms/self_cert_export.html?prod_no=ti_cgt_c6000_6.1.14_setup_linux_x86.bin&ref_url=http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/codegen/C6000/6.1.14
https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm
https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 93

b. In the main menu, under the Target Image Generation heading, choose Options.

c. Under the Choose your root filesystem image type heading, choose Target image.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 94

d. Select yaffs2 and exit back to the main menu.

e. In the main menu, select Packages list.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 95

f. In the Package list window, select gstreamer.

g. Under the gstreamer heading, choose the following packages:

▪ gstreamer-plugins-base

▪ gstreamer-plugins-good

▪ gstreamer-plugins-bad

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 96

h. Under the zlib heading, choose the following packages:

▪ mediactl

▪ yavta

i. Next, select TI DVSDK Packages.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 97

j. In the TI DVSDK Packages window, select the following packages:

▪ C6Run Package

▪ C6Accel Package

▪ DMAI-based GStreamer Plugins

k. Exit the main menu and save your configuration.

At this time, LTIB will rebuild the BSP with the DVSDK packages. Allow the build to complete

and note any errors.

NOTE: The YAFFS image type is required in this case because the DVSDK package consumes

a lot of RAM. In most cases, this prevents the use of the default RAMdisk root filesystem.

NOTE: If a package changes from "[*]" or "[]" to "---", this means the package is

automatically selected due to other dependencies. This also means you cannot deselect this

package unless you first deselect the dependent packages.

NOTE: Do not set C6X_C_DIR as described in the TI C6000 tool suite instructions. \This will

prevent you from successfully building the DVSDK in the LTIB environment.

NOTE: One of the GStreamer plugins may causes some error messages to be emitted during

GStreamer init. It has not been determined yet which plugin causes these errors. However,

since this error only occurs while the plugin scanner is running at startup, it shouldn't cause

any issues. Below is an example of the error seen.

(gst-plugin-scanner:773): GStreamer-CRITICAL **: gst_caps_ref: assertion

`GST_CAPS_REFCOUNT_VALUE (caps) > 0' failed

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 98

8.2 Run Time Configuration

1. Once you have the BSP built with the DVSDK packages, make a bootable SD card by

copying the necessary files from the build (see Section 3.2.10.5 or Section 3.2.13.2).

2. The U-Boot $otherbootargs environment variable must then be updated to allocate

memory for DSPLink, CMEM, and related utilities.

OMAP Logic # setenv otherbootargs 'ignore_loglevel early_printk

no_console_suspend mem=55M@0x80000000 mem=128M@0x88000000'

OMAP Logic # saveenv

Review Section 3.2 for information regarding the U-Boot bootloader; review

Section 3.2.2 for details regarding the $otherbootargs environment variable.

3. You can now cycle the power on the DM3730 Development Kit and boot into Linux.

Please note that on early DM37x Linux BSP releases, the modules cmemk, dsplinkk,

lpm_omap3530, and sdmak failed to load at boot. This is indicated by the boot log just

prior to the login prompt, as seen in the output below.

DirectFB: Setup DirectFB for touch input Restoring ALSA state for

soundcard omap3logic

FATAL: Module cmemk not found.

FATAL: Module dsplinkk not found.

FATAL: Module lpm_omap3530 not found.

FATAL: Module sdmak not found.

Enabling PM off mode:

 Welcome to the LTIB Embedded Linux Environment

!!!!! WARNING !!!!!!!

The default password for the root account is: root

please change this password using the 'passwd' command

and then edit this message (/etc/issue) to remove this message.

To enable DHCP on ethernet, type "ifup eth0"

DM-37x login:

4. If you see the modules fail to load, as shown in the example above, enter the

command below in your LTIB directory to force LTIB to update the module

dependencies.

bash$./ltib -p modeps

Processing platform: Logic OMAP3530/03&DM3730/03 reference boards

===

using config/platform/omap_logic/.config

Processing: modeps

====================

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 99

Started: Fri Nov 16 16:34:12 2012

Ended: Fri Nov 16 16:34:14 2012

Elapsed: 2 seconds

Build Succeeded

bash$

5. When complete, recopy the images onto the kit and reboot.

8.3 Example DSP and Camera Use

Below are some examples of commands that demonstrate the DSP and camera functionality.

Some commands make use of a camera connected to the development kit via the parallel

camera interface or via the USB port. Be aware that not all baseboards include a parallel

camera connector. Please verify a parallel camera can be connected directly to your baseboard

before proceeding with the parallel camera examples.

8.3.1 DSP Example

■ DSPLink Example

DM-37x# cd /usr/share/ti/ti-dsplink-examples

DM-37x# ./loopgpp ./loop.out 1000 5000 0

■ C6Accel Example

DM-37x# cd /usr/share/ti/c6accel-apps

DM-37x# ./c6accel_app

NOTE: You may see occasional errors when running the C6Accel example due to a bug

in CGT tools v6.1.14. This is not a problem with the Logic PD DM37x Linux BSP. See

issue DM37LINUX-670 in the DM37x Linux BSP Release Notes35 for additional

information.

■ DMAI Example

DM-37x# cd /usr/share/ti/ti-dmai-apps/

DM-37x# ./image_encode_io1_dm3730.x470MV -c jpegenc -i /dev/zero -o

jpeg_test_encoded.jpeg -r 720x576 --iColorSpace 3 --benchmark

DM-37x# ./image_encode_io1_dm3730.x470MV -c jpegenc -i /dev/urandom -o

jpeg_test_encoded.jpeg -r 720x576 --iColorSpace 3 --benchmark

DM-37x# ./image_decode_io1_dm3730.x470MV -c jpegdec -i

jpeg_test_encoded.jpeg -o jpeg_test_decoded.yuv --oColorSpace 3 --

benchmark

DM-37x# ./video_encode_io1_dm3730.x470MV -c h264enc -i /dev/zero -n 100

-o h264_test_encoded.h264 -r 720x576 --benchmark

DM-37x# ./video_encode_io1_dm3730.x470MV -c h264enc -i /dev/urandom -n

10 -o h264_test_encoded.h264 -r 720x576 --benchmark

35 http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1396

http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1396
http://support.logicpd.com/DesktopModules/Bring2mind/DMX/Download.aspx?portalid=0&EntryId=1396

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 100

DM-37x# ./video_decode_io2_dm3730.x470MV -c h264dec -i

h264_test_encoded.h264 -n 10 -o h264_test_decoded.yuv --benchmark

■ C6Run Example

NOTE: C6Run uses a different CMEM configuration than the other DSPLink libraries.

Make sure to restart CMEM with the original arguments before using other DSPLink

libraries.

1. First, perform some initial setup.

DM-37x# cd /usr/share/ti/c6run-apps/

DM-37x# ./unloadmodules.sh

DM-37x# ./loadmodules.sh

2. Run a “Hello World” example.

DM-37x# examples/c6runapp/hello_world/hello_world_arm

DM-37x# examples/c6runapp/hello_world/hello_world_dsp

3. Run a CIO example.

DM-37x# examples/c6runapp/cio_example/cio_example_arm

DM-37x# examples/c6runapp/cio_example/cio_example_dsp

4. Run a benchmark example.

DM-37x# examples/c6runapp/emqbit/bench_arm

DM-37x# examples/c6runapp/emqbit/bench_dsp

5. Finally, restart CMEM with the original arguments.

DM-37x# /etc/rc.d/init.d/cmem restart

8.3.2 Parallel Camera Example

This section explains how to set up the parallel camera and provides examples of how to use

it. The targeted parallel camera is the Leopard Imaging 5 megapixel LI-5M04 camera adapter

board, which can be connected to J6 on the DM3730 Torpedo Development Kit. The parallel

camera feature is not available on the DM3730 SOM-LV Development Kit.

Please connect the camera to the DM3730 Torpedo Development Kit before powering on the

board. Note that JP5 needs a jumper across pins 1-2 to enable the 8-bit video data bus. More

information about the camera adapter board is available on the Leopard Imaging website.36

1. Prepare the system to use the LI-5M04 camera by setting the exposure and gain on

the camera and setting up the video input hardware pipeline.

36 http://shop.leopardimaging.com/product.sc?productId=24

http://shop.leopardimaging.com/product.sc?productId=24
http://shop.leopardimaging.com/product.sc?productId=24

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 101

NOTE: The first command below is used to disable the LCD blanking timeout. This

command can be used at any time and is not specific to the DSP or camera use.

DM-37x# echo -ne "\033[9;0]\033[?25l" > /dev/tty0

DM-37x# yavta -w '0x00980911 720' /dev/v4l-subdev8

DM-37x# yavta -w '0x00980913 16' /dev/v4l-subdev8

DM-37x# yavta -w '0x0098090e 125' /dev/v4l-subdev8

DM-37x# yavta -w '0x0098090f 175' /dev/v4l-subdev8

DM-37x# media-ctl -v -r -l '"mt9p031":0->"OMAP3 ISP CCDC":0[1], "OMAP3

ISP CCDC":2->"OMAP3 ISP preview":0[1], "OMAP3 ISP preview":1->"OMAP3

ISP resizer":0[1], "OMAP3 ISP resizer":1->"OMAP3 ISP resizer

output":0[1]'

2. Preview the LI-5M04 camera on the LCD.

DM-37x# media-ctl -v -f '"mt9p031":0 [SGRBG8 1298x970

(664,541)/1298x970], "OMAP3 ISP CCDC":2 [SGRBG10 1298x970], "OMAP3 ISP

preview":1 [UYVY 1298x970], "OMAP3 ISP resizer":1 [UYVY 640x480]'

DM-37x# gst-launch v4l2src device=/dev/video6 num-buffers=150 always-

copy=false queue-size=4 ! 'video/x-raw-

yuv,format=(fourcc)UYVY,width=640,height=480,framerate=30/1' ! queue !

tidisplaysink2 mmap-buffer=true

3. Capture a JPEG image from the LI-5M04 camera and display it.

DM-37x# media-ctl -v -f '"mt9p031":0 [SGRBG8 2610x1954

(7,49)/2610x1954], "OMAP3 ISP CCDC":2 [SGRBG10 2610x1954], "OMAP3 ISP

preview":1 [UYVY 2610x1954], "OMAP3 ISP resizer":1 [UYVY 2592x1944]'

DM-37x# gst-launch v4l2src device=/dev/video6 num-buffers=1 ! 'video/x-

raw-yuv,format=(fourcc)UYVY,width=2592,height=1944' ! TIImgenc1

engineName=codecServer codecName=jpegenc resolution=2592x1944

iColorSpace=UYVY oColorSpace=YUV420P qValue=97 ! filesink

location=still.jpg

DM-37x# gst-launch filesrc location=still.jpg ! jpegdec !

ffmpegcolorspace ! videoscale ! 'video/x-raw-rgb,width=320,height=240'

! fbdevsink device=/dev/fb0

4. Capture an H.264 video from the LI-5M04 camera and play it back.

DM-37x# media-ctl -v -f '"mt9p031":0 [SGRBG8 1298x970

(664,541)/1298x970], "OMAP3 ISP CCDC":2 [SGRBG10 1298x970], "OMAP3 ISP

preview":1 [UYVY 1298x970], "OMAP3 ISP resizer":1 [UYVY 640x480]'

DM-37x# gst-launch v4l2src device=/dev/video6 num-buffers=300 always-

copy=false queue-size=4 ! 'video/x-raw-

yuv,format=(fourcc)UYVY,width=640,height=480,framerate=24/1' !

TIPrepEncBuf numOutputBufs=4 contiguousInputFrame=false ! tee name=tee

tee. ! queue ! tidisplaysink2 mmap-buffer=true tee. ! queue ! TIVidenc1

engineName=codecServer codecName=h264enc contiguousInputFrame=true !

queue ! avimux ! filesink blocksize=65536 location=video640x480.avi

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 102

DM-37x# gst-launch filesrc location=video640x480.avi ! avidemux !

TIViddec2 engineName=codecServer codecName=h264dec ! queue !

tidisplaysink2

8.3.3 USB Webcam Example

The targeted USB webcam is the Logitech C210 webcam. Other webcams that support USB

Video Class (UVC) standards may work as well, but will not necessarily be supported by

Logic PD. More information can be found using the following resources:

■ Logitech website37

■ Ideas on Board website38

The USB webcam should be connected after booting Linux to ensure that the /dev/video*

nodes have consistent numbering. If you are using the DM3730 SOM-LV Development Kit, the

webcam can be connected to a USB Host port (USB2/J7, USB4/J43, USB5/J44) or the USB

OTG port (J6). If you are using the DM3730 Torpedo Development Kit, the webcam must be

connected to the USB OTG port (J19) since the ISP1763 driver does not currently support

isochronous transfers.

To connect a webcam to the USB OTG port, first connect the webcam to a self-powered USB

hub. Then, connect the USB hub to the kit using an adapter that has a USB mini-A male plug39

on one side and a USB-A female receptacle on the other. Note that some USB mini-A male

adapters do not seem to ground the ID pin properly, making them unusable.

1. Prepare the system for using the C210 USB webcam by disabling the virtual console

screen timeout.

DM-37x# echo -ne "\033[9;0]\033[?25l" > /dev/tty0

2. Preview the C210 USB webcam on the LCD.

DM-37x# gst-launch v4l2src num-buffers=90 device=/dev/video9 !

'image/jpeg,width=320,height=240,framerate=30/1' ! jpegdec !

ffmpegcolorspace ! tidisplaysink2

3. Capture a JPEG image from the C210 USB webcam and display it. The

jpegdec/jpegenc is needed to add a standard JPEG header to the minimal MJPEG

frame returned from the device.

DM-37x# gst-launch v4l2src num-buffers=1 device=/dev/video9 !

'image/jpeg,width=640,height=480,framerate=15/1' ! jpegdec ! jpegenc !

filesink location=usbstill.jpg

DM-37x# gst-launch filesrc location=usbstill.jpg ! jpegdec !

ffmpegcolorspace ! videoscale ! 'video/x-raw-rgb,width=320,height=240'

! fbdevsink device=/dev/fb0

4. Capture an MJPEG video from the C210 USB webcam and play it back.

37 http://www.logitech.com/en-us/webcam-communications/webcams/7022
38 http://www.ideasonboard.org/uvc/#devices
39 http://www.digikey.com/product-search/en?x=14&y=18&lang=en&site=us&keywords=10-00003-ND

http://www.logitech.com/en-us/webcam-communications/webcams/7022
http://www.ideasonboard.org/uvc/#devices
http://www.digikey.com/product-search/en?x=14&y=18&lang=en&site=us&keywords=10-00003-ND
http://www.logitech.com/en-us/webcam-communications/webcams/7022
http://www.ideasonboard.org/uvc/%23devices

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 103

DM-37x# gst-launch v4l2src num-buffers=90 device=/dev/video9 !

'image/jpeg,width=640,height=480,framerate=15/1' ! queue ! avimux !

filesink blocksize=65536 location=usbvideo.avi

DM-37x# gst-launch filesrc location=usbvideo.avi ! avidemux ! jpegdec !

ffmpegcolorspace ! tidisplaysink2

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 104

9 GTK Demo

GTK requires some software overhead to implement, so it is not enabled by default. This

section explains how to enable GTK in your build and run the GTK demo application.

9.1 Prepare Build Tools

To build GTK, be sure to include the necessary packages on your build machine. Please refer

to the README-setup file in the DM37x Linux BSP tar ball for an up-to-date list of the

packages needed to build GTK.

Or, if you choose to use the package installer script ltib_setup.sh (see Section 2.3.1) that is in

the tar ball, be sure to answer “YES” if prompted to install packages for GTK. If you are not

prompted, the packages for GTK have been included by default. See Section 2.3.1.2 for more

information on installing packages on your build machine.

9.2 Build

1. If you have not done so already, be sure to perform your first build of the BSP as

described in Section 2.4.

2. Next, update your build to include the following GTK+ and Liberation fonts packages.

See Section 2.5.4 for more information.

a. Begin by running the command below.

bash$./ltib -c

b. In the main menu, select Packages list.

c. In the Packages list window, select the appropriate packages.

d. Exit the menu.

3. LTIB will build the BSP, including those packages.

9.3 Run Demo

1. Once the build completes, place the following files from the build into the root

directory of an SD card. See Section 1.8 and/or Section 2.4 for additional information

regarding these files.

□ MLO

□ u-boot.bin

□ uImage

□ rootfs.ext2.gz.uboot

2. Because the size of the RAM-based root filesystem is much larger with the GTK tools,

you may need to allocate more RAM to the filesystem. To do this, follow the steps

below.

a. Interrupt the boot sequence to get to the U-Boot shell.

b. Set the ramdisksize environment variable as shown below.

OMAP Logic # setenv ramdisksize 128000

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 105

c. Save the environment for future boots.

OMAP Logic # saveenv

d. Continue the boot cycle for the current session.

OMAP Logic # boot

3. When Linux is up and running, proceed to log in using root credentials.

4. Once logged in, launch the demo.

DM-37x# /usr/bin/gdk-pixbuf-query-loaders > /usr/etc/gtk-2.0/gdk-

pixbuf.loaders

DM-37x# mkdir /usr/etc/pango

DM-37x# pango-querymodules > /usr/etc/pango/pango.modules

DM-37x# /usr/bin/gtk-demo

You should see the following output on the LCD panel.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 106

10 Customize LTIB

LTIB has a pool of compilers, bootloader source code, OS source code, application source

code, and various utilities. When you have created something you want to include in the LTIB

pool, this section describes how you can integrate it.

LTIB is a powerful tool capable of much more than what is documented in this user guide. If

this document does not provide enough information on how to use LTIB, please take a look at

the /doc/LtibFaq file in the DM37x Linux BSP tar ball.

All file and path references below assume the reader is working in the LTIB directory (i.e., the

directory in which the DM37x Linux BSP tar ball was unpacked).

The information below is provided as guidance, without any specific examples. Each package

has its own requirements and may require more or less steps than those outlined below. The

best way to create your own package is to use another package as a template (such as the

helloworld or hello_mod packages) and create a similar, simple package. When the package

build is successful, begin adding and updating the package as needed.

10.1 Definitions

Several words and phrases that will be used in the following sections have been defined below

for clarity.

■ Package: A group of source code files that, when compiled, make up an application to

be included in the filesystem.

■ Service: An application that is started when the system boots and stopped when the

system is shut down.

■ Prep a package: Extract a tar ball into rpm/BUILD and apply all patches.

■ Build a package: Compile a package into files for the target (i.e., create executables).

■ Install a package: Copy files of interest to the target's filesystem.

■ Deploy a package: Installs, strips, and compresses the complete target filesystem,

then generates a filesystem image.

■ Patch/merge: If you make changes to a package (e.g., integrate tweaks, bug fixes),

LTIB can capture your modifications in a patch. By creating a patch, the original

package source remains unchanged, and the changes you have made to the package

are kept as a separate patch file.

10.2 Integrate New Package

Start with your existing lump of code. You'll eventually need to make changes to it, but LTIB

can capture and reproduce those changes for you later by using the patchmerge feature.

The following instructions assume you are working from the LTIB root directory where you

installed the DM37x Linux BSP. The procedure below explains how to integrate a package and

name it myStuff.

1. Compress your source into a tar ball. For example, use tar -cjf myStuff-version.tar.bz2

myStuff-version/. Note that you'll need to adhere to the following naming restrictions:

□ The directory name and the tar ball must have the same base name.

□ The version must be separated from the rest of the name by a hyphen.

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 107

□ There must not be a period anywhere in the base.

One available concession from all these restrictions is that you can use underscores

wherever you want.

2. Move the compressed tar ball to a package pool directory, such as lpd-IP-package-

pool/.

3. Publish a checksum of the tar ball. For example, use md5sum myStuff-version.tar.bz2

> myStuff-version.tar.bz2.md5.

4. Create a directory for the package's spec file in the dist/lfs-5.1 folder. For example,

use mkdir dist/lfs-5.1/myStuff.

5. Create a spec file that ties the package together. For example, use dist/lfs-

5.1/myStuff/myStuff.spec. It identifies the tar ball (and patch files, if any) and is

where you'll write shell scripts to build and install. Review some other spec files to see

how to construct the contents. The dist/lfs-5.1/template file provides a good example

and is intended to be used for such purposes.

6. Try it out by using ./ltib -p myStuff.spec -m prep. If all has gone well, you'll end up

with rpm/BUILD/myStuff-version. If not, you'll have to figure out where you led LTIB

astray. Fortunately LTIB is pretty good about printing out the shell commands it is

executing.

7. Next, you need to update the packages.lkc and pkg_map files.

a. Navigate to config/userspace.

b. Open and edit the packages.lkc file. Create an entry for your new package. Keep

in mind that the order of the entries in this file is the same order of the entries in

the LTIB package selection window. If you need an example to follow, see the

PKG_HELLOWORLD entry.

c. Open and edit the pkg_map file. The order of entries is the order that LTIB will

build them. So, if your package depends on other packages being built, make sure

your entry is positioned after all of your package's dependents. Follow the pattern

seen in the file.

d. The left side of the equal sign will be the package selector that matches the

"config <name>" of your new entry in packages.lkc, where <name> starts with

"PKG_" as in PKG_MY_NEW_APPLICATION. The value on the right side of the equal

sign will be the name of the .spec directory in dist/lfs-5.1 and the prefix of the

.spec file in that directory.

e. Note that LTIB understands versioning of spec files. If you have helloworld-

1.0.spec and helloworld-2.0.spec in dist/lfs-5.1/helloworld, LTIB will pick

helloworld-2.0.spec when you specify -p helloworld on the command line. If you

need a particular version, you can use the full spec name on the command line

(e.g., -p helloworld-1.0.spec).

10.2.1 Integrate New Service

This section will describe how to add a service that starts when the system boots and stops

when the system is shut down. For this example, we'll use a service called lpd-demo that is a

demonstration program that will run on startup and will continue in the background.

1. Integrate your package. See Section 10.2 for additional information.

2. Add a startup option to the platform's sysconfig-xxxx.lkc file, where xxxx is the

platform of interest. In the case of the DM37x Linux BSP v2.2-2, this is

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 108

config/packages/omap_logic/sysconfig-omap.lkc. To determine which sysconfig-

xxxx.lkc is sourced, review main.lkc and look for source sysconfig-xxxx.lkc, where

xxxx in this case is indicated in the file.

Note that the startup selector should be dependent on the package. That way, LTIB

won't ask to start a service if the service isn't built and installed. Consider the example

below from the sysconfig-omap.lkc file, where we are creating an lpc-demo service.

config SYSCFG_START_LPC_DEMO

 depends PKG_LPD_DEMO

 bool "start lpd-demo at boot"

 default

3. Modify sysconfig.spec for the platform. In this case, it will be dist/lfs-

5.1/sysconfig/sysconfig-omap_logic.spec, determined by the pkg_map file mapping

most likely mentioned in the platform pkg_map file. You need to update all_services,

all_services_r, cfg_services, and cfg_services_r, and make your entry selected by

whether the SYSCFG_START_LPD_DEMO is enabled.

Note that the "_r" versions of the services are reversed in that they stop the services

in the reverse order that they were started. You'll need something similar to the

example below. Assuming services for this example are A, B, C:

if ["$SYSCFG_START_LPD_DEMO" = "y"]

then

 lpd_demo=lpd-demo

fi

all_services="A B C lpd_demo"

all_services_r="lpd_demo C B A"

cfg_services="$A $B $C $lpd_demo"

cfg_services_r="$lpd_demo $C $B $A"

4. Modify the skell package to add the service startup script. In our example, the

/etc/rc.d/init.d/lpd-demo is modified to be:

#!/bin/sh

Enable lpd-demo on startup

action=$1

if ["$1" = "stop" -o "$action" = "restart" -o "$action" = "init"]

then

 echo "Stopping lpd-demo: "

 exec /etc/rc.d/rc.restart lpd-demo $action

fi

if ["$action" = "reinit"]

then

 action=start

fi

if ["$action" = "start" -o "$action" = "restart"]

then

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 109

 lpd-demo&

fi

5. Execute ./ltib -c.

6. In the configuration under the Target System Configuration menu, enable the lpd-

demo package and the lpd-demo service. Now when you boot the resulting image, it

should start the lpd-demo service/application.

10.2.2 Build

Now that you have prepared your package, it is time to work on building it. LTIB gives you

some shell variables to help out; TOP and TOOLCHAIN_* are some of the most useful. To see

what shell variables your package would have available at build time, use ./ltib -m shell in the

LTIB directory, then enter set | more. Enter exit when you're done with the shell.

When you use ltib -p myStuff.spec -m scbuild, LTIB will find the "%Build" section of the

myStuff.spec file and run the lines it finds there as a shell script. The initial directory will be

rpm/BUILD/myStuff-version and the kernel will be at $TOP/rpm/BUILD/linux. You can now do

make or configure or cd or whatever -- it is your shell script to write. LTIB will stop if any line

results in an error ($?).

The scbuild command assumes you have done prep once. You can use scbuild over and over

as needed.

10.2.3 Installing

Now you have some items that you want available on the target. Start writing another shell

script in the "%Install" section of your spec file. The goal is to copy the files of interest to

$RPM_BUILD_ROOT/%{pfx}; LTIB will do the rest

You'll want to start with rm -rf $RPM_BUILD_ROOT to keep LTIB happy and prevent

accumulation from previous scinstall invocations. You can then create directories (perhaps

mkdir -p or install -d) and copy files.

You can even make symbolic links (ln -s). Be sure to stay within the target filesystem or use

absolute paths that are resolvable on the target.

After a successful scbuild of your myStuff package, use ./ltib -p myStuff.spec -m scinstall.

If you're really brave or you think it's going to work, use ./ltib -p myStuff.spec -m scdeploy.

This always does a scinstall, but it then goes the next step and makes a target elf that

contains the explicitly configured items plus your package.

You can get a sneak peek of the target filesystem at the rootfs sub-directory.

10.2.4 Test

You'll need to copy rootfs/boot/MLO, rootfs/boot/u-boot.bin, rootfs/boot/uImage, and

rootfs.ext2.gz.uboot to an SD card. Your files will show up at the location you specified with

the scinstall command. NOTE: The executable files will have their symbols stripped.

10.2.5 Configure

To make your package more generally available, you need to tell LTIB that it is available and

give LTIB the platforms for which it is available. To do this, you will edit various .lkc files under

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 110

config/ (see "How do I introduce my new package to the config system" in doc/LtibFaq for

more information). You can also add an automatic startup script to be run at the end of the

target's boot (see "How to add a daemon to init" in doc/LtibFaq for more information).

Once your package is configured (both defined and selected), you no longer have to type the

.spec suffix on your package name.

Actually, the inverse is more important to remember for package debugging: If the -p

argument to LTIB doesn't recognize your package name, config either doesn't understand it

(not defined) or doesn't want it (not selected). However, you can always force it by suffixing

.spec to your package name; LTIB will find the file in a sub-directory of dist/lfs-5.1.

10.3 Removing Drivers

With a plethora of drivers offered by Logic PD, not all of them are required on every device.

This section explains how to remove drivers while building the kernel. Generally, this allows

less use of memory and power.

10.3.1 General Instructions

Below is the general set of instructions to remove any driver that is provided with the kernel.

1. First, move to the appropriate directory.

bash$ cd ~/logic/Logic_BSPs/Linux_3.0/1027480_LogicPD_Linux_BSP_2.4-4

2. Build the Linux kernel using the preset configuration in Section 2.4.

bash$./ltib -b --preconfig config/platform/omap_logic/defconfig

3. Once the preset configuration is built, open the kernel configuration menu.

bash$./ltib -c

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 111

4. Select "Configure the kernel."

5. Select Exit and select Yes when asked if you wish to save your new configuration.

6. Next, select Device Drivers

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 112

7. Once in this directory, select the drivers that are to be deleted. In this example, the

USB driver will be removed.

8. Press the space bar to remove the ‘*’. This will remove all the USB support.

9. Select Exit and select Yes when asked if you wish to save your new configuration.

The new configurations will be applied and built. The uImage file to boot the SOM can

be found at REL-ltib-DM3730-2.4-2/rootfs/boot/uImage.

10.3.2 Remove Specific Interfaces

This section provides guidelines for removing specific drivers. Once you get to the kernel

configuration menu, search for the configuration definitions in the table below using the search

“/” option in LTIB. This will give you the direct path to the driver for disabling it in the LTIB

kernel configuration menu.

The table below provides the configuration setting for specific drivers.

Table 10.1: Driver-Specific Configuration Settings

Interface Configuration Variable

1-Wire

CONFIG_W1_SLAVE_BQ27000
CONFIG_POWER_SUPPLY
CONFIG_BATTERY_BQ27x00
CONFIG_BATTERY_BQ27X00_PLATFORM
CONFIG_HWMON
CONFIG_HDQ_MASTER_OMAP

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 113

Interface Configuration Variable

Bluetooth

CONFIG_BT_WILINK
CONFIG_WIRELESS
CONFIG_WEXT_CORE
CONFIG_WEXT_PROC
CONFIG_BT
CONFIG_BT_L2CAP
CONFIG_BT_SCO
CONFIG_BT_RFCOMM
CONFIG_BT_RFCOMM_TTY
CONFIG_BT_BNEP
CONFIG_BT_HIDP

Display Hardware Drivers

CONFIG_OMAP2_VRAM
CONFIG_OMAP2_VRFB
CONFIG_OMAP2_DSS
CONFIG_OMAP2_VRAM_SIZE
CONFIG_OMAP2_DSS_DEBUG_SUPPORT
CONFIG_OMAP2_DSS_DPI
CONFIG_OMAP2_DSS_VENC
CONFIG_OMAP2_DSS_DSI

CONFIG_OMAP2_DSS_MIN_FCK_PER_PCK
CONFIG_OMAP2_DSS_SLEEP_BEFORE_RESET
CONFIG_OMAP2_DSS_SLEEP_AFTER_VENC_RESET
CONFIG_FB_OMAP2
CONFIG_FB_OMAP2_DEBUG_SUPPORT
CONFIG_FB_OMAP2_NUM_FBS
CONFIG_PANEL_GENERIC_DPI
CONFIG_PANEL_OMAP3LOGIC
CONFIG_BACKLIGHT_LCD_SUPPORT
CONFIG_LCD_CLASS_DEVICE
CONFIG_LCD_PLATFORM
CONFIG_BACKLIGHT_CLASS_DEVICE
CONFIG_BACKLIGHT_GENERIC
CONFIG_DISPLAY_SUPPORT
CONFIG_DUMMY_CONSOLE
CONFIG_FRAMEBUFFER_CONSOLE
CONFIG_FONTS
CONFIG_FONT_8x8
CONFIG_FONT_8x16
CONFIG_LOGO
CONFIG_LOGO_LINUX_MONO
CONFIG_LOGO_LINUX_VGA16
CONFIG_LOGO_LINUX_CLUT224
CONFIG_FB_CFB_FILLRECT
CONFIG_FB_CFB_COPYAREA
CONFIG_FB_CFB_IMAGEBLIT
CONFIG_FB

Ethernet

CONFIG_SMSC_PHY
CONFIG_NET_ETHERNET
CONFIG_SMSC911X
CONFIG_NETDEV_1000
CONFIG_NETDEV_10000
CONFIG_WLAN

LED Driver

CONFIG_LEDS_GPIO
CONFIG_LEDS_GPIO_PLATFORM
CONFIG_LEDS_TRIGGERS

MMC/SD/SDIO Card Driver

CONFIG_MMC_BLOCK
CONFIG_MMC_BLOCK_MINORS
CONFIG_MMC_BLOCK_BOUNCE
CONFIG_SDIO_UART

MMC/SD/SDIO Host Controller
Drivers

CONFIG_MMC_OMAP
CONFIG_MMC_OMAP_HS
CONFIG_NEW_LEDS
CONFIG_LEDS_CLASS

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 114

Interface Configuration Variable

Serial UART

CONFIG_OMAP3LOGIC_UART_A
CONFIG_OMAP3LOGIC_UART_B
CONFIG_OMAP3LOGIC_UART_C

SPI Interface

CONFIG_OMAP3LOGIC_AT25160AN
CONFIG_OMAP3LOGIC_SPI1_CS0
CONFIG_OMAP3LOGIC_SPI1_CS1
CONFIG_OMAP3LOGIC_SPI1_CS2
CONFIG_OMAP3LOGIC_SPI1_CS3
CONFIG_OMAP3LOGIC_SPI3_CS0
CONFIG_OMAP3LOGIC_SPI3_CS1

Touch
CONFIG_TOUCHSCREEN_TSC2004
CONFIG_INPUT_TOUCHSCREEN

USB Host Controller Drivers

CONFIG_USB_ISP1763
CONFIG_USB_ISP1763_HCD
CONFIG_USB_ISP1763_HCD_SELECT

USB OTG Driver CONFIG_TWL4030_USB

Wireless Chipset

CONFIG_WL12XX_MENU
CONFIG_WL12XX
CONFIG_WL128X_FIRMWARE_SOURCE

CONFIG_WL127X_FIRMWARE_SOURCE
CONFIG_WL12XX_HT
CONFIG_WL12XX_SDIO
CONFIG_WL12XX_PLATFORM_DATA

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 115

11 Basic Driver/Kernel Debugging Information

This section provides basic debug tools to debug the kernel and custom driver.

11.1 dmesg

The command dmesg (for display message) is available on some Unix-like operating systems

and it prints the internal message buffer ring of the kernel. To get the complete log, see

/var/log/messages.

The log levels allow you to see kernel messages specific to the level set. A level of 7 will

display all possible messages. A level of 0 will only display kernel emergency messages

indicating the system is about to crash or is unstable.

To view the current console_loglevel, enter the command below at the kernel prompt.

DM-37x# cat /proc/sys/kernel/printk

7 4 1 7

The first integer shows the current console_loglevel; the second shows the default log level,

the third shows the minimum level, and the last integer shows the boot time default log level.

By default the otherbootargs parameter is set to ignore_loglevel, which means you cannot

turn off the console log messages. Remove that from otherbootargs in the U-Boot

environment and use the command below to set the log level that will be output to the

console. All messages are still saved in /var/log/messages

OMAP Logic # dmesg -n <0-7>

More information on kernel log levels can be found in the Linux Debugging by print wiki

article.40

11.2 Dynamic Debug

To see all possible debug messages in a specific file, use grep for the desired file within

dynamic_debug/control.

The example below shows all possible debug messages available in mcbsp.c.

DM-37x# cat /sys/kernel/debug/dynamic_debug/control | grep mcbsp.c

arch/arm/plat-omap/mcbsp.c:1819 [mcbsp]omap_mcbsp_probe - "Initializing

OMAP McBSP (%d).\012"

arch/arm/plat-omap/mcbsp.c:211 [mcbsp]omap_mcbsp_config - "Configuring

McBSP%d phys_base: 0x%08lx\012"

arch/arm/plat-omap/mcbsp.c:185 [mcbsp]omap_mcbsp_rx_dma_callback - "RX

DMA callback : 0x%x\012"

arch/arm/plat-omap/mcbsp.c:171 [mcbsp]omap_mcbsp_tx_dma_callback - "TX

DMA callback : 0x%x\012"

40 http://elinux.org/Debugging_by_printing#Log_Levels

http://elinux.org/Debugging_by_printing#Log_Levels
http://elinux.org/Debugging_by_printing#Log_Levels
http://elinux.org/Debugging_by_printing%23Log_Levels

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 116

arch/arm/plat-omap/mcbsp.c:152 [mcbsp]omap_mcbsp_rx_irq_handler - "RX

IRQ callback : 0x%x\012"

arch/arm/plat-omap/mcbsp.c:132 [mcbsp]omap_mcbsp_tx_irq_handler - "TX

IRQ callback : 0x%x\012"

arch/arm/plat-omap/mcbsp.c:96 [mcbsp]omap_mcbsp_dump_reg - "****

McBSP%d regs ****\012"

arch/arm/plat-omap/mcbsp.c:98 [mcbsp]omap_mcbsp_dump_reg - "DRR2:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:100 [mcbsp]omap_mcbsp_dump_reg - "DRR1:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:102 [mcbsp]omap_mcbsp_dump_reg - "DXR2:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:104 [mcbsp]omap_mcbsp_dump_reg - "DXR1:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:106 [mcbsp]omap_mcbsp_dump_reg - "SPCR2:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:108 [mcbsp]omap_mcbsp_dump_reg - "SPCR1:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:110 [mcbsp]omap_mcbsp_dump_reg - "RCR2:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:112 [mcbsp]omap_mcbsp_dump_reg - "RCR1:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:114 [mcbsp]omap_mcbsp_dump_reg - "XCR2:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:116 [mcbsp]omap_mcbsp_dump_reg - "XCR1:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:118 [mcbsp]omap_mcbsp_dump_reg - "SRGR2:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:120 [mcbsp]omap_mcbsp_dump_reg - "SRGR1:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:122 [mcbsp]omap_mcbsp_dump_reg - "PCR0:

0x%04x\012"

arch/arm/plat-omap/mcbsp.c:123 [mcbsp]omap_mcbsp_dump_reg -

"***********************\012"

DM-37x#

11.3 Enable Specific Debug Message

You can enable only specific messages per file or within a specific file. This section provides

examples about how to show debug messages specific to mcbsp.c or a specific debug message

within mcbsp.c.

Use the command below to enable all messages within mcbsp.c.

DM-37x# echo "file mcbsp.c +p" >

/sys/kernel/debug/dynamic_debug/control

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 117

Use the command below to enables only the message on line 120 in mcbsp.c.

DM-37x# echo "file mcbsp.c line 120 +p" >

/sys/kernel/debug/dynamic_debug/control

To disable a message or set of messages, use the –p command. More information about using

dynamic debug can be found here.41

11.4 Debug Modules

Information for specific modules is readily available using the commands below.

The lsmod command provides developers a way to list modules loaded in the kernel.

DM-37x# lsmod

Module Size Used by

g_ether 57800 0

DM-37x#

The modinfo command provides information about the Linux kernel module.

DM-37x# modinfo <module_name>

The systool command lists the options that are set for a loaded module.

DM-37x# systool -v -m <module_name>

The modprobe -c | less command lists the comprehensive configuration for all modules.

DM-37x# modinfo -c | less’

The grep command displays the configuration of a particular module.

DM-37x# modprobe -c | grep <module_name>

The modprobe command lists the dependencies of a module (or alias), including the module

itself.

DM-37x# modprobe --show-depends <module_name>

41 https://www.kernel.org/doc/Documentation/dynamic-debug-howto.txt

https://www.kernel.org/doc/Documentation/dynamic-debug-howto.txt
https://www.kernel.org/doc/Documentation/dynamic-debug-howto.txt

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 118

For example:

DM-37x# modprobe --show-depends wl12xx

insmod /lib/modules/3.0.0-BSP-dm37x-2.4-

2/kernel/drivers/net/wireless/wl12xx/wl12xx.ko

DM-37x# modprobe --show-depends wl12xx_sdio

insmod /lib/modules/3.0.0-BSP-dm37x-2.4-

2/kernel/drivers/net/wireless/wl12xx/wl12xx.ko

insmod /lib/modules/3.0.0-BSP-dm37x-2.4-

2/kernel/drivers/net/wireless/wl12xx/wl12xx_sdio.ko

The is command lists available module parameters.

DM-37x# ls /sys/module/<module_name>/parameters

12 Reporting Problems

For more information, please look in the doc/ sub-directory of the LTIB installation. There you

will find an FAQ and other documentation describing the proper use of the program. If you do

have a bug to report to Logic PD, please include the following information:

1. Full name of LTIB package (ISO or TAR archive) and its MD5SUM

2. Build log that you obtained by entering the LTIB directory and entering the command

below

bash$./ltib -f 2>&1 | tee my-ltib-error-log

DM37x Linux BSP User Guide

PN 1020203H Logic PD, Inc. All Rights Reserved. 119

13 Appendix A: Enable MCS0 and MCS7

MCS0 and MCS7 are enabled by default when the omap3logic_defconfig is used in the kernel.

If the kernel is configured to use the omap3logic_defconfig-performance on the Torpedo +

Wireless, MCS0 and MCS7 may not be available for Wifi operation. If MCS0 or MSC7 are

desired:

1. Run ltib to configure the kernel:

2. Go into the Kernel Hacking menu.

3. Select “Lock debugging: detect incorrect freeing of live locks”

4. Select “Lock debugging: prove locking correctness”

5. Select “Lock usage statistics”

6. Exit and build

	1 Introduction
	1.1 Nomenclature
	1.2 Development Resources
	1.3 The BSP Design
	1.4 Prerequisites
	1.5 Precautionary Statement
	1.6 Paths to Linux Platform Development
	1.7 Timesys Partnership
	1.8 Recreating DM37x Linux Demo SD Card
	1.9 Additional Information

	2 Build Source
	2.1 Virtual Machine
	2.2 Obtain Build Environment and Source
	2.2.1 Patches

	2.3 Prepare Host PC
	2.3.1 Required Host PC Packages
	2.3.1.1 Switch to Bash Instead of Dash
	2.3.1.2 Install Packages
	2.3.1.3 Perl Packages

	2.4 Build
	2.4.1 Files Available after Build
	2.4.2 Place Final Images on SOM

	2.5 Common LTIB Commands
	2.5.1 Source Code for Specific Packages
	2.5.2 Build Changes and Create Output Files
	2.5.3 Reset to Fresh Build Environment
	2.5.4 Create Cross-Compilation Shell
	2.5.5 Configure BSP
	2.5.5.1 Example: Create YAFFS Root Filesystem Image
	2.5.5.2 Example: Include GTK+ and Liberation Fonts Packages in Build

	2.5.6 The .config File
	2.5.7 Review Selected Packages

	2.6 Review BSP Configuration without LTIB Installed
	2.7 Other Tools
	2.7.1 LTIB /bin Directory
	2.7.1.1 Using mkLogicFATcard.sh to create an SD Card with a RAM Disk Image
	2.7.1.2 Using mkLogicFATcard.sh to create an SD Card with a YAFFS rootfs for NAND

	2.7.2 /opt/ltib/usr/bin Directory
	2.7.3 /opt/CodeSourcery Directory

	2.8 CodeSourcery 2011.09 Compiler

	3 Boot Configuration
	3.1 Boot Sequence
	3.2 U-Boot
	3.2.1 Get Started
	3.2.2 Configure Boot
	3.2.2.1 Configure Display

	3.2.3 U-Boot help Command
	3.2.4 U-Boot Environment
	3.2.5 Shell Variables
	3.2.6 Display Splash Screen
	3.2.7 Printing Text to the Display
	3.2.8 Script with Variables
	3.2.9 Script from Memory
	3.2.10 Boot from NAND Flash
	3.2.10.1 X-Loader
	3.2.10.2 U-Boot
	3.2.10.3 Kernel
	3.2.10.4 RAMdisk NAND Flash Boot Example
	3.2.10.5 YAFFS Root Filesystem Boot Example

	3.2.11 Boot with X-Loader, U-Boot, Kernel, and Root Filesystem on SD Card
	3.2.12 Boot with Read-Only Root File system
	3.2.13 Useful Scripts
	3.2.13.1 makenandboot Script
	3.2.13.2 makeyaffsboot Script

	3.2.14 Debug UART

	4 Kernel
	4.1 vi Editor
	4.2 Retrieve BSP Version
	4.3 Display Product ID System Information
	4.4 Display Linux System Information
	4.5 Wired Networking
	4.5.1 Assign Development Kit IP Address
	4.5.1.1 Use ifconfig Command to Report Ethernet Status
	4.5.1.2 Add DHCP from Kernel Command Line
	4.5.1.3 Add Static IP Address from Kernel Command Line
	4.5.1.4 Using DHCP
	4.5.1.5 Using Static IP
	4.5.1.6 Use ifconfig Command with DHCP

	4.5.2 Set Speed, Duplex, and Auto-Negotiate
	4.5.3 Test Network

	4.6 Linux Processes
	4.6.1 ps Command
	4.6.2 kill Command

	4.7 Video Display
	4.7.1 Draw Test
	4.7.2 DirectFB
	4.7.3 Backlight
	4.7.4 Display Message

	4.8 Audio
	4.9 External Memory Interface
	4.10 Touch Screen
	4.11 Built-in Flash Storage via MTD
	4.11.1 Erase Flash Partitions
	4.11.2 Mount NOR Flash using JFFS2
	4.11.3 Mount NAND Flash using YFFS2

	4.12 Wireless Networking with Linux 2.6x Kernels
	4.13 Wireless Networking with Linux 3.x Kernels
	4.13.1 Start Wireless Interface in Station Mode
	4.13.1.1 Scan for Available Wireless Networks

	4.13.2 Start Wireless Interface in AP Mode
	4.13.3 Start Wireless Interface in Multi-Role
	4.13.4 Setting Regulatory Domains Using the CRDA (Central Regulatory Domain Agent)

	4.14 Bluetooth
	4.14.1 Start or Stop Bluetooth Interface
	4.14.2 Assign Hardware Name
	4.14.3 View Bluetooth Device Configuration
	4.14.4 Modify Bluetooth Device Configuration
	4.14.5 Scan for Bluetooth Devices
	4.14.6 Query Bluetooth Device

	4.15 USB Controller
	4.16 USB Host Controller
	4.17 Processor OTG Controller
	4.17.1 Use MUSB in Host Mode
	4.17.2 Use MUSB in Device Mode

	4.18 UART
	4.19 I2C
	4.20 SPI
	4.21 Real Time Clock
	4.22 Analog-to-digital Converters
	4.23 BQ27000 Gas Gauge Support
	4.24 Smart Reflex
	4.25 Run/Idle/Suspend
	4.26 Virtual Files
	4.26.1 echo Command and ">" Operator
	4.26.2 /sys/kernel/debug Directory
	4.26.2.1 Clock Tree
	4.26.2.2 Pin Mux
	4.26.2.3 General Purpose Bus Configuration

	4.27 Shut Down Linux System
	4.28 Additional Peripheral Test Information
	4.29 CPU Benchmarks
	4.30 Use Peekpoke to Examine/Modify Registers
	4.31 Filesystem Commands
	4.31.1 df Command
	4.31.2 cat /proc/mtd Command
	4.31.3 flash_eraseall Command
	4.31.4 badblocks Command

	4.32 Using Linux Voltage and Current Regulator Framework
	4.33 Reading Temperature Sensor

	5 Boot Kernel from TFTP Server and Root Filesystem from NFS Server
	5.1 Set Up TFTP Server in Ubuntu 12.04
	5.2 Setup NFS Server in Ubuntu 12.04
	5.3 Set Up the DM3730/AM3703 Target Platform

	6 Application Development
	6.1 "Hello World” Application Example
	6.1.1 Build “Hello World” Application
	6.1.2 Transfer “Hello World” Application to Root Filesystem
	6.1.2.1 Transfer “Hello World” Application using TFTP

	6.1.3 Run “Hello World” Application

	6.2 GPS Demo Application Example
	6.2.1 Build GPS Demo Application
	6.2.2 Transfer GPS Demo Application to Target
	6.2.3 Run GPS Demo Application

	6.3 Debug with GNU Debugger
	6.3.1 Configure Build Options
	6.3.2 Set Up GDB

	7 Loadable Module Development
	7.1 “Hello World” Module
	7.1.1 Build “Hello World” Module
	7.1.2 Run “Hello World” Module

	8 Cameras and DSP (DVSDK)
	8.1 Prepare Build Tools
	8.2 Run Time Configuration
	8.3 Example DSP and Camera Use
	8.3.1 DSP Example
	8.3.2 Parallel Camera Example
	8.3.3 USB Webcam Example

	9 GTK Demo
	9.1 Prepare Build Tools
	9.2 Build
	9.3 Run Demo

	10 Customize LTIB
	10.1 Definitions
	10.2 Integrate New Package
	10.2.1 Integrate New Service
	10.2.2 Build
	10.2.3 Installing
	10.2.4 Test
	10.2.5 Configure

	10.3 Removing Drivers
	10.3.1 General Instructions
	10.3.2 Remove Specific Interfaces

	11 Basic Driver/Kernel Debugging Information
	11.1 dmesg
	11.2 Dynamic Debug
	11.3 Enable Specific Debug Message
	11.4 Debug Modules

	12 Reporting Problems
	13 Appendix A: Enable MCS0 and MCS7

